1 The reactive transport benchmark J. Carrayrou Institut de Mécanique des Fluides et des Solides, Laboratoire d’Hydrologie et de Géochimie de Strasbourg,

Slides:



Advertisements
Similar presentations
1 A parallel software for a saltwater intrusion problem E. Canot IRISA/CNRS J. Erhel IRISA/INRIA Rennes C. de Dieuleveult IRISA/INRIA Rennes.
Advertisements

A parallel scientific software for heterogeneous hydrogeoloy
Numerical simulation of solute transport in heterogeneous porous media A. Beaudoin, J.-R. de Dreuzy, J. Erhel Workshop High Performance Computing at LAMSIN.
Reactive transport A COMPARISON BETWEEN SEQUENTIAL ITERATIVE AND GLOBAL METHODS FOR A REACTIVE TRANSPORT NUMERICAL MODEL J. Erhel INRIA - RENNES - FRANCE.
ASME-PVP Conference - July
Sparse linear solvers applied to parallel simulations of underground flow in porous and fractured media A. Beaudoin 1, J.R. De Dreuzy 2, J. Erhel 1 and.
Emerging Technologies for FETCH2 Jeff Gomes Applied Modelling and Computation Group (AMCG) Severe Accident Subproject Meeting 14/11/2011.
1 High performance Computing Applied to a Saltwater Intrusion Numerical Model E. Canot IRISA/CNRS J. Erhel IRISA/INRIA Rennes C. de Dieuleveult IRISA/INRIA.
1 Numerical Simulation for Flow in 3D Highly Heterogeneous Fractured Media H. Mustapha J. Erhel J.R. De Dreuzy H. Mustapha INRIA, SIAM Juin 2005.
1 A new iterative technique for solving nonlinear coupled equations arising from nuclear waste transport processes H. HOTEIT 1,2, Ph. ACKERER 2, R. MOSE.
1 Modélisation et simulation appliquées au suivi de pollution des nappes phréatiques Jocelyne Erhel Équipe Sage, INRIA Rennes Mesures, Modélisation et.
By Paul Delgado. Motivation Flow-Deformation Equations Discretization Operator Splitting Multiphysics Coupling Fixed State Splitting Other Splitting Conclusions.
A modified Lagrangian-volumes method to simulate nonlinearly and kinetically adsorbing solute transport in heterogeneous media J.-R. de Dreuzy, Ph. Davy,
Parallel Computation of the 2D Laminar Axisymmetric Coflow Nonpremixed Flames Qingan Andy Zhang PhD Candidate Department of Mechanical and Industrial Engineering.
High performance flow simulation in discrete fracture networks and heterogeneous porous media Jocelyne Erhel INRIA Rennes Jean-Raynald de Dreuzy Geosciences.
Ground-Water Flow and Solute Transport for the PHAST Simulator Ken Kipp and David Parkhurst.
Coupling Continuum Model and Smoothed Particle Hydrodynamics Methods for Reactive Transport Yilin Fang, Timothy D Scheibe and Alexandre M Tartakovsky Pacific.
An efficient parallel particle tracker For advection-diffusion simulations In heterogeneous porous media Euro-Par 2007 IRISA - Rennes August 2007.
IMA Workshop on Compatible Discretizations
Finite-Element-Based Characterisation of Pore- scale Geometry and its Impact on Fluid Flow Lateef Akanji Supervisors Prof. Martin Blunt Prof. Stephan Matthai.
Peyman Mostaghimi, Martin Blunt, Branko Bijeljic 11 th January 2010, Pore-scale project meeting Direct Numerical Simulation of Transport Phenomena on Pore-space.
1 Internal Seminar, November 14 th Effects of non conformal mesh on LES S. Rolfo The University of Manchester, M60 1QD, UK School of Mechanical,
Spatial Reduction Algorithm for Numerical Modeling of Atmospheric Pollutant Transport Yevgenii Rastigejev, Philippe LeSager Harvard University Michael.
REVIEW. What processes are represented in the governing equation that we use to represent solute transport through porous media? Advection, dispersion,
Subsurface Hydrology Unsaturated Zone Hydrology Groundwater Hydrology (Hydrogeology )
Multi-Scale Finite-Volume (MSFV) method for elliptic problems Subsurface flow simulation Mark van Kraaij, CASA Seminar Wednesday 13 April 2005.
Finite Difference Methods to Solve the Wave Equation To develop the governing equation, Sum the Forces The Wave Equation Equations of Motion.
Direct and iterative sparse linear solvers applied to groundwater flow simulations Matrix Analysis and Applications October 2007.
Numerical methods for PDEs PDEs are mathematical models for –Physical Phenomena Heat transfer Wave motion.
1 Parallel Simulations of Underground Flow in Porous and Fractured Media H. Mustapha 1,2, A. Beaudoin 1, J. Erhel 1 and J.R. De Dreuzy IRISA – INRIA.
Solute (and Suspension) Transport in Porous Media
P. Ackerer, IMFS, Barcelona About Discontinuous Galerkin Finite Elements P. Ackerer, A. Younès Institut de Mécanique des Fluides et des Solides,
© IFP Energies nouvelles Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources Time.
Finite Differences Finite Difference Approximations  Simple geophysical partial differential equations  Finite differences - definitions  Finite-difference.
Modelling Flow through Fractures in Porous Media Holzbecher Ekkehard Wong LiWah Litz Marie-Sophie Georg-August-University Göttingen, Geological Sciences,
( ) A. Mangeney 1,3, O. Roche 2, L. Tsimring 3, F. Bouchut 4, O. Hungr 5, I. Ionescu 6, N. Mangold 7 1 Equipe de Sismologie, Institut de Physique du Globe.
C M C C Centro Euro-Mediterraneo per i Cambiamenti Climatici COSMO General Meeting - September 8th, 2009 COSMO WG 2 - CDC 1 An implicit solver based on.
1 SIMULATION OF VIBROACOUSTIC PROBLEM USING COUPLED FE / FE FORMULATION AND MODAL ANALYSIS Ahlem ALIA presented by Nicolas AQUELET Laboratoire de Mécanique.
Environmental Modelling, Security Measures and Decision Making Zahari Zlatev National Environmental Research Institute Frederiksborgvej 399, P. O. Box.
Brookhaven Science Associates U.S. Department of Energy MUTAC Review January 14-15, 2003, FNAL Target Simulations Roman Samulyak Center for Data Intensive.
Approximate Riemann Solvers for Multi-component flows Ben Thornber Academic Supervisor: D.Drikakis Industrial Mentor: D. Youngs (AWE) Aerospace Sciences.
US Army Corps of Engineers ® Engineer Research and Development Center Reactive Transport (3): Solve Biogeochemistry with The Primitive Approach Pearce.
Salt precipitation in porous media and multi-valued solutions G. G. Tsypkin Institute for Problems in Mechanics RAS, Moscow, Russia Petroleum engineering.
Upscaling of Transport Processes in Porous Media with Biofilms in Non-Equilibrium Conditions L. Orgogozo 1, F. Golfier 1, M.A. Buès 1, B. Wood 2, M. Quintard.
Journées Scientifiques du GNR MOMAS, novembre 2009DM2S/SFME/LSET 1 MPCube Development Ph. Montarnal, Th. Abballe, F. Caro, E. Laucoin, DEN Saclay.
© Fluent Inc. 11/24/2015J1 Fluids Review TRN Overview of CFD Solution Methodologies.
Outline Numerical implementation Diagnosis of difficulties
© IFP Controlled CO 2 | Diversified fuels | Fuel-efficient vehicles | Clean refining | Extended reserves Écrire ici dans le masque le nom de votre Direction.
1 Point-implicit diffusion operator in a moving particle method (MPPM) Yao-Hsin Hwang Department of Marine Engineering National Kaohsiung Marine University.
Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D transport modelling of fusion devices Alexander Kalentyev.
Materials Process Design and Control Laboratory Sibley School of Mechanical and Aerospace Engineering 169 Frank H. T. Rhodes Hall Cornell University Ithaca,
FALL 2015 Esra Sorgüven Öner
1 IV European Conference of Computational Mechanics Hrvoje Gotovac, Veljko Srzić, Tonći Radelja, Vedrana Kozulić Hrvoje Gotovac, Veljko Srzić, Tonći Radelja,
CO 2 maîtrisé | Carburants diversifiés | Véhicules économes | Raffinage propre | Réserves prolongées © IFP Écrire ici dans le masque le nom de votre Direction.
HYDROGRID J. Erhel – October 2004 Components and grids  Deployment of components  CORBA model  Parallel components with GridCCM Homogeneous cluster.
An Introduction to Computational Fluids Dynamics Prapared by: Chudasama Gulambhai H ( ) Azhar Damani ( ) Dave Aman ( )
Higher Order Runge-Kutta Methods for Fluid Mechanics Problems Abhishek Mishra Graduate Student, Aerospace Engineering Course Presentation MATH 6646.
1 Simulation of the Couplex 1 test case and preliminary results of Couplex 2 H. HOTEIT 1,2, Ph. ACKERER 1, R. MOSE 1 1 IMFS STRASBOURG 2 IRISA RENNES 1.
1 Mary F. Wheeler 1, Sanghyun Lee 1 With Nicholas Hayman 2, Jacqueline Reber 3, Thomas Wick 4 1 Center for Subsurface Modeling, University of Texas at.
Computational Fluid Dynamics Lecture II Numerical Methods and Criteria for CFD Dr. Ugur GUVEN Professor of Aerospace Engineering.
Convergence in Computational Science
Objective Numerical methods.
GENERAL VIEW OF KRATOS MULTIPHYSICS
Transport Modeling in Groundwater
Objective Numerical methods Finite volume.
Transport Modeling in Groundwater
CASA Day 9 May, 2006.
Baltic Sea Research Institute Warnemünde, Germany
Atmospheric modelling of HMs Sensitivity study
Presentation transcript:

1 The reactive transport benchmark J. Carrayrou Institut de Mécanique des Fluides et des Solides, Laboratoire d’Hydrologie et de Géochimie de Strasbourg, Université de Strasbourg - CNRS, UMR 7517

2 Participants Amir L, Kern M. INRIA Rockencourt Hoffmann J., Knabner P., Kräutle S. University of Erlangen-Nuremberg, Department of Mathematics, Erlangen, Germany de Dieuleveult C., Erhel J. INRIA Rennes; ANDRA Van der Lee J., Lagneau V. Ecole des Mines de Paris Mayer K.U. University of British Columbia, Dept. of Earth and Ocean Sciences, Vancouver, BC, Canada MacQuarrie K.T.B University of New Brunswick, Dept. of Civil Engineering, Fredericton, NB, Canada

3 Outline Introduction: objectives of the benchmark The 1D easy level Some results

4 Some questions… (about the resolution)

5 Operator Splitting / Global Approach Operator Splitting: Iterative – Non iterative OS scheme OS errors Global Approach: Scheme : DSA / DAE Resolution of non linear system CPU time / Memory

6 Space discretisation Objectives –Stability –Numerical diffusion –Efficiency Finite Elements / Volumes Particle Tracking ELLAM methods…

7 Time discretisation Explicit / Implicit Higher order Adaptive time step –Heuristic –Predictor-corrector

8 About convergence… Iterative method for chemistry Iterative method for transport (SIA) Iterative method for global approach What about very small concentration –From transport C = … –Numerical problem if C = 0

9 The 1D easy-level benchmark Medium-level Hard-level 2D

10 Reactive transport modelling Advection – Diffusion – Reaction equation U pore velocity D dispersion tensor (non diagonal) ω porosity T M total mobile concentration T F total fixed concentration

11 Equilibrium chemistry Reactions Mobile SpeciesNon mobile Species Mass action laws Conservation laws

12 The 1D reactive domain High permeability Low porosity Low reactivity Low permeability High porosity High reactivity

13 Chemical reactions injected

14 Some results

15 Main features of the compared codes

16 CPU time for advective case

17 Very close results

18 Localized differences

19

20 CPU time dispersive case

21 Dispersive case is more disciminative

22 Conclusion

23 New methods Reduction scheme (Hoffmann et al.) –Reduces the set of coupled variables –Reduces the computing time –Available for all the approaches Method of lines (de Dieuleveult and Erhel) –High precision using coarse meshes –CPU time long Newton-Krylov (Amir and Kern) –Some problems –Some very promising results

24 Difficulties More preparation on the intercomparison criteria –Definition of the key – point of the solution –Giving a reference solution Maybe a more realistic problem ?

25 For a next benchmark Development using many codes –Some points are clearly visible using SNIA or SIA approach but not for global one Cooperation between many teams –Having many codes –Is it realistic ? Keeping a well defined problem

26 Carrayrou J., M. Kern, P. Knabner (2009). Reactive transport benchmark of MoMaS, Comp. Geosci., on line first. Carrayrou, J. (2009). Looking for some reference solutions for the Reactive Transport Benchmark of MoMaS with SPECY, Comp. Geosci., on line first. de Dieuleveult, C., Erhel, J. (2009) A global approach for reactive transport: application to the benchmark easy test case of MoMaS, Comp. Geosci., on line first. Hoffmann J., Kräutle S., Knabner P. (2009) A Parallel Global-Implicit 2-D Solver for Reactive Transport Problems in Porous Media based on a Reduction Scheme and its Application to the MoMaS Benchmark Problem. Comp. Geosci., under revision. Lagneau, V. van der Lee, J. (2009) HYTEC results of the MoMas reactive transport benchmark, Comput. Geosci., on line first. Mayer, K.U., and K.T.B. MacQuarrie (2009). Formulation of the multicomponent reactive transport code MIN3P and implementation of MoMaS benchmark problems, Comp. Geosci, on line first. Carrayrou J., Hoffmann J., Knabner P., Kräutle S., de Dieuleveult C., Erhel J., Van der Lee J., Lagneau V., Mayer K.U., MacQuarrie K.T.B (2009). A synthesis of the MoMaS reactive transport results, Comp. Geosci, under revision. Articles

27 Conférences Eurotherm, 2008 Albi International Workshop on reactive transport, 2008 Strasbourg SIAM, 2009 Leipzig