Figure S1. The coding sequence alignment among OsAHPs and OsPHPs, and the relative expression of OsAHPs and OsPHPs in OsAHPs-RNAi and wild-type rice seedlings.

Slides:



Advertisements
Similar presentations
Analysis of Transgenic Plants. 1.Regeneration on Selective Medium Selectable Marker Gene.
Advertisements

Mips1-1/35S::MIPS1- RFP/PMIPS1::MIPS1-GFP mips1-1/PMIPS1::MIPS1- GFP mips1-1/35S::MIPS1- RFP/PMIPS1::MIPS1-GFP mips1-1/PMIPS1::MIPS1- GFP GFPTransmission.
Figure S1. Genomic PCR of in vitro potato plants transformed with StPTB1 prom (top) and StPTB6 prom (bottom) constructs using nptII-specific primers. Thirty.
Enzyme activity (μmol mg protein-1 min -1 ) DAA Xu-142 Xu-142 fl mutant CIN VIN CWIN (C) Supplemental Figure 1 Control.
(a) (b) (c) (d) (e) (f) (g) Figure S1.. Figure S1. Comparison of OsPCR1-6 and GW2 transcript levels in the grains of developing gw2 and wild-type isogenic.
Supplemental Figure 1. The wxr3 mutant exhibits decreased expression of CYCB1;1, SCR and SHR compared with the control. A and B, Expression of ProCYCB1;1:GUS.
Gene expression (signal intensity) Control Osmotic Salt Drought Root Control Gene expression (signal intensity) Treatment.
Figure S1. Figure S1. Relative expression levels of YUC family member transcripts in roots under high and low N conditions. Seedlings 4 days after germination.
Fig. S1. Amino acid sequence alignment of MYBS3 proteins. MYBS3 protein sequences of Arabidopsis thaliana (MYBH; NP_199550); (At3g16350; NP_188256), Glycine.
AtPAT10 TIP1 Akr1p1 Akr2p Erf2p Swf1p Pfa5 Pfa3 GODZ HIP14 Pfa4 AtPAT10 TIP1 Akr1p1 Akr2p Erf2p Swf1p Pfa5 Pfa3 GODZ HIP14 Pfa4 AtPAT10 TIP1 Akr1p1 Akr2p.
Figure S1 (Chen) (a) 1xABRC321:GUS 1xABRC321 2xABRC321:GUS 2xABRC321 3xABRC321:GUS 3xABRC321 GUS 0xABRC321:GUS Amy64 mini PHVA22 In1-Ex2-In2 HVA22 3’ -60.
Plants and algae Fungi Metazoa Protist Supplementary Figure 1. Phylogenetic analysis of GlsA1/ZRF orthologs in different organisms. Coloured background.
Supplementary Fig. 1. RT-PCR showed that tumor tissues have elevated Mst1 mRNA levels in most of the HCC patients tested. GAPDH RT-PCR products were shown.
(a)(b) Fig. S1 Figure S1. Functional classification of genes that were upregulated (a) or downregulated (b) by systemic application of GA. Five micro liter.
Developmental- and tissue-specific expression of NbCMT3-2 encoding a chromomethylase in Nicotiana benthamiana Yu-Ting Lin 1 ( 林郁婷 ), Huei-Mei Wei 1, Syue-Yu.
Supplemental Figure 1. The cell death phenotype of fhy3 far1 double mutants. A. The cell death phenotype of fhy3-4 far1-2 mutant plants under LD conditions.
HKT1 form Arabidopsis relative extremophile Thellungiella work as Na/K co-transporter.
Figure S1. Co-expression network for MNM1: Shown is the co-expression network obtained from the ATTED-II database using MNM1 as a bait gene. The red dots.
Cui-Cui Zhang, Wen-Ya Yuan, Qi-Fa Zhang  Molecular Plant 
Supplemental Fig. S1 A B AtMYBS aa AtMYBS
Potassium Transporter KUP7 Is Involved in K+ Acquisition and Translocation in Arabidopsis Root under K+-Limited Conditions  Min Han, Wei Wu, Wei-Hua Wu,
Volume 101, Issue 5, Pages (May 2000)
A 25 NLS OsHXK5-GFP OsHXK5ΔmTP-GFP OsHXK5ΔNLS-GFP OsHXK5ΔmTPΔNLS-GFP
Volume 4, Issue 1, Pages (January 2011)
Volume 25, Issue 19, Pages (October 2015)
A Dual-Function Transcription Factor, AtYY1, Is a Novel Negative Regulator of the Arabidopsis ABA Response Network  Tian Li, Xiu-Yun Wu, Hui Li, Jian-Hui.
TsNAC1 regulated the growth of T. halophila.
Arabidopsis Transcription Factor Genes NF-YA1, 5, 6, and 9 Play Redundant Roles in Male Gametogenesis, Embryogenesis, and Seed Development  Jinye Mu,
Volume 2, Issue 1, Pages (January 2009)
Volume 6, Issue 5, Pages (September 2013)
Volume 26, Issue 2, Pages (January 2016)
A Dual-Function Transcription Factor, AtYY1, Is a Novel Negative Regulator of the Arabidopsis ABA Response Network  Tian Li, Xiu-Yun Wu, Hui Li, Jian-Hui.
Potassium Transporter KUP7 Is Involved in K+ Acquisition and Translocation in Arabidopsis Root under K+-Limited Conditions  Min Han, Wei Wu, Wei-Hua Wu,
Volume 6, Issue 5, Pages (September 2013)
Volume 48, Issue 4, Pages (November 2012)
Volume 3, Issue 2, Pages (August 2002)
Volume 10, Issue 6, Pages (June 2017)
Supplemental Figure 3 A B C T-DNA 1 2 RGLG1 2329bp 3 T-DNA 1 2 RGLG2
Liyuan Chen, Anne Bernhardt, JooHyun Lee, Hanjo Hellmann 
Volume 17, Issue 1, Pages (July 2009)
Volume 120, Issue 2, Pages (January 2005)
The WUSCHEL Related Homeobox Protein WOX7 Regulates the Sugar Response of Lateral Root Development in Arabidopsis thaliana  Danyu Kong, Yueling Hao, Hongchang.
Rodríguez-Milla Miguel A. , Salinas Julio   Molecular Plant 
Volume 18, Issue 10, Pages (May 2008)
Volume 10, Issue 11, Pages (November 2017)
Volume 13, Issue 16, Pages (August 2003)
DNA Topoisomerase VI Is Essential for Endoreduplication in Arabidopsis
Role of Arabidopsis RAP2
The Arabidopsis Transcription Factor AtTCP15 Regulates Endoreduplication by Modulating Expression of Key Cell-cycle Genes  Li Zi-Yu , Li Bin , Dong Ai-Wu.
Carbonylation and Loss-of-Function Analyses of SBPase Reveal Its Metabolic Interface Role in Oxidative Stress, Carbon Assimilation, and Multiple Aspects.
Volume 2, Issue 4, Pages (April 2002)
BRI1/BAK1, a Receptor Kinase Pair Mediating Brassinosteroid Signaling
Volume 9, Issue 8, Pages (August 2016)
Volume 5, Issue 6, Pages (November 2012)
Dnmt2 mutants show delayed immune responses and Dnmt2–EGFP relocalizes and interacts with DCV RNA during infection. Dnmt2 mutants show delayed immune responses.
Volume 7, Issue 8, Pages (August 2014)
Cui-Cui Zhang, Wen-Ya Yuan, Qi-Fa Zhang  Molecular Plant 
A Conserved Interaction between SKIP and SMP1/2 Aids in Recruiting the Second-Step Splicing Factors to the Spliceosome in Arabidopsis  Lei Liu, Fangming.
Volume 103, Issue 5, Pages (November 2000)
Volume 6, Issue 6, Pages (November 2013)
Volume 2, Issue 1, Pages (January 2009)
Volume 25, Issue 7, Pages e4 (November 2018)
Volume 10, Issue 6, Pages (June 2017)
Volume 15, Issue 1, Pages (July 2004)
Frank G. Harmon, Steve A. Kay  Current Biology 
The Arabidopsis Homolog of the Mammalian OS-9 Protein Plays a Key Role in the Endoplasmic Reticulum-Associated Degradation of Misfolded Receptor-Like.
Wang Long , Mai Yan-Xia , Zhang Yan-Chun , Luo Qian , Yang Hong-Quan  
Volume 5, Issue 1, Pages (January 2012)
A B C Name Sequence TIMP3 promoter
Volume 11, Issue 7, Pages (July 2018)
Presentation transcript:

Figure S1. The coding sequence alignment among OsAHPs and OsPHPs, and the relative expression of OsAHPs and OsPHPs in OsAHPs-RNAi and wild-type rice seedlings. (A) Schematic representation of the OsAHP-RNAi construct. The numbers indicate the nucleotide positions in the OsAHP2 coding sequence. Pubi, maize Ubiquitin promoter. (B) The coding sequences of the genes were aligned; underlining indicates the RNAi fragment used to knock down OsAHP1-2. (C) Measurement of the mRNA levels of two OsAHPs and three OsPHPs in shoots and roots by qRT-PCR.

Figure S2. Expression patterns of OsAHP1 and OsAHP2. (A) Real-time PCR analysis of OsAHP1 and OsAHP2 expression in different tissues. (B-H) GUS staining assay of Pro OsAHP2 ::GUS transgenic rice plants. (B) Five-day-old seedlings. (C) Five-day-old seminal roots. (D) Eight-day-old seminal roots and lateral roots. (E) Lamina joint. (F) Mature leaf. (G) Basal node. (H) Spikelet.

Figure S3. OsAHP2 overexpression partially rescued the Arabidopsis ahp1,2,3,4,5 mutant phenotype. (A) Nine-day-old seedlings of wild-type, the ahp1,2,3,4,5 quintuple mutant, and ahp1,2,3,4,5 mutant expressing the OsAHP2-GFP fusion protein grown under long-day conditions. (B) Confocal image of the OsAHP2-GFP fusion protein in root cells of the transgenic plant shown in (A). (C) Western blot analysis of OsAHP2-GFP expression in two lines of seedlings shown in (A) using anti-GFP antibodies. Rubisco (RBC) was used as a loading reference.

Supplemental Table S1. Primers used for gene cloning. PurposePrimer nameSequence (5' to 3') OsAHPs-RNAi AHPRNAiFGGGGTACCACTAGTACCAGCTCACCGCTCTCCTCT AHPRNAiRCGGGATCCGAGCTCGGGATCATAAGCCTGGATTTGC 2×35S::OsAHP1-GFP OXAHP1FGCTCTAGATCCATTCCATCCATCTCTCTC OXAHP1RGGGGTACCCCATGTTTAGGGTAACAAGCTTGG 2×35S::OsAHP2-GFP OXAHP2FGCTCTAGACTCTTCTCTTCTCTTCTGCCT OXAHP2RGGGGTACCCCTTGCTGCTTGGGATCATAAGC Pro OsAHP2 ::GUS PAHP2FCGGGATCCGGGAGGCACTGCACTATTTC PAHP2RCGGAATTCGGGCGAGCGCAATCGGAAT

GenePrimer nameSequence (5' to 3') OsActin1 ACTIN-FTGTATGCCAGTGGTCGTACCA ACTIN-RCCAGCAAGGTCGAGACGAA OsAHP1 OsAHP1-FCAGAGATGGGTGCCTCAAGAC OsAHP1-RCGCGCCAGTTTAATGTTTAGG OsAHP2 OsAHP2-FGCGCAACAAGTTTCAGACTATGC OsAHP2-RGATCACATGCAGCTACACTCTTTTG OsPHP1 OsPHP1-FAGCTGCTAAGACAAGCTGGC OsPHP1-RTCCTATTTCCAGCTGCTAAGAC OsPHP2 OsPHP2-FCAGTTACTGAGGCAAGTTGGTC OsPHP2-RTACTGTTCTTCTTACTTCCTTGAGC OsPHP3 OsPHP3-FCTGTTGCGACAAGCTGGTC OsPHP3-RCAGCCCGAGACCAATTCAATAG OsRR1 OsRR1-FAGGATCAGCAGATGCATGAATG OsRR1-RGAGACGCTGTACGTCCTTGCTT OsRR2 OsRR2-FGACTAGCCATGGTGATGAATGC OsRR2-RGCTGCCATTGGACCATCTGT OsRR4 OsRR4-FTGGCATGACAGGGTATGATCTG OsRR4-RTCCTTGCAGGCACATTCTCA OsRR6 OsRR6-FGTCCCCAACGTCAACATGATC OsRR6-RCACGTTCTCCGACGACATGAT OsRR7 OsRR7-FTGCTCAAGAAGATCAAGGAATCG OsRR7-RGGCACGTTCTCTGACGACATTAT OsRR9/10 OsRR9/10-FTCATGAGGACAGCCCAATTTCTA OsRR9/10-RTGCAGTAGTCTGTGATGATCAGGTT OsSOS1 OsSOS1-FGAAGAGGTGATTGTCAGAGTCG OsSOS1-RGAGTATTTCCATTGGCTGGTCC OsHKT1;1 OsHKT1;1-FGGCTATGGTAAAAGCTGAAGC OsHKT1;1-RCACTATGGCCCAATTAGAAACC OsHKT1;5 OsHKT1;5-FTTCCATGCACACCCATTCTG OsHKT1;5-RGAAACCCAAGAGGGAGATGAAGA OsNHX1 OsNHX1-FGGCTGATGAGAGGAGCTGTGT OsNHX1-RATTGCCGTGCAGCTGAGTATG OsNHX5 OsNHX5-FATGATGATGTCTTCGGTGAACAA OsNHX5-RTCAGGTGGCAACTCATCCAA OsDREB1A OsDREB1A-FGGAATCAGGAGCAAGCAGAAA OsDREB1A-RCGACTCGCCGCTCATCTC OsDREB1C OsDREB1C-FCGAGTACCAGAGCTGGCAGAT OsDREB1C-RTGTATAGGAGGAGCAAAGCTGGTT OsDREB2A OsDREB2A-FAAAAGCGATGGCCCTGATTC OsDREB2A-RTTGGCTGGCGCTTTCCT Supplemental Table S2. Primers used for qRT-CR analysis.

Coin Figure: Thirty-day-old wild-type (WT) and OsAHPs-RNAi seedlings grown on 250 mM mannitol-containing mediums