Preventing Sudden Cardiac Death Rob Blake NA Seminar 2006-11-14.

Slides:



Advertisements
Similar presentations
Outline Neuronal excitability Nature of neuronal electrical signals Convey information over distances Convey information to other cells via synapses Signals.
Advertisements

Bioelectromagnetism Exercise #2 – Answers TAMPERE UNIVERSITY OF TECHNOLOGY Ragnar Granit Institute.
4 th order Embedded Boundary FDTD algorithm for Maxwell Equations Lingling Wu, Stony Brook University Roman Samulyak, BNL Tianshi Lu, BNL Application collaborators:
Apparatus to Study Action Potentials
Adaptive multi-scale model for simulating cardiac conduction Presenter: Jianyu Li, Kechao Xiao.
LECTURE 12 Graded Potentials Action Potential Generation
1 Computing the electrical activity in the human heart Aslak Tveito Glenn T. Lines, Joakim Sundnes, Bjørn Fredrik Nielsen, Per Grøttum, Xing Cai, and Kent.
Nervous coordination 2 The nerve impulse.
Action Potentials and Limit Cycles Computational Neuroeconomics and Neuroscience Spring 2011 Session 8 on , presented by Falk Lieder.
Resting potentials, equilibrium potential, and action potentials Mr. Strapps says “I put the “rest” in resting potential.”
Cardiac Simulations with Sharp Boundaries Preliminary Report Shuai Xue, Hyunkyung Lim, James Glimm Stony Brook University.
Computational Biology, Part 19 Cell Simulation: Virtual Cell Robert F. Murphy, Shann-Ching Chen, Justin Newberg Copyright  All rights reserved.
Cellular Neuroscience (207) Ian Parker Lecture # 4 - The Hodgkin- Huxley Axon
ECE 501 Introduction to BME
Action Potentials Miss Tagore A2 Biology.
DR. HANA OMER Electrical Conduction System. The Electrical Conduction System of the Heart Cardiac cells have four properties: Excitability: allows response.
Chapter 5 Lecture 10 Spring Nonlinear Elements 1. A nonlinear resistance 2. A nonlinear reactance 3. A time varying element in you circuit or system.
Defining of “physiology” notion
Scaling of Ventricular Turbulence Phase Singularities Numerical Implementation Model Construction (cont.) Conclusions and Future Work  We have constructed.
A guide to modelling cardiac electrical activity in anatomically detailed ventricles By: faezeh heydari khabbaz.
Gating Modeling of Ion Channels Chu-Pin Lo ( 羅主斌 ) Department of Applied Mathematics Providence University 2010/01/12 (Workshop on Dynamics for Coupled.
Numerical Simulation of a Coupled Electro-Mechanical Heart Model Henian Xia, Kwai Wong, Wenjun Ying, and Xiaopeng Zhao National Institute for Computational.
Department of Aerospace and Mechanical Engineering A one-field discontinuous Galerkin formulation of non-linear Kirchhoff-Love shells Ludovic Noels Computational.
OpenCMISS + CellML David Nickerson & Chris Bradley Auckland Bioengineering Institute University of Auckland New Zealand.
CARDIOVASCULAR SYSTEM PHYSIOLOGY. Pulmonary circulation: Path of blood from right ventricle through the lungs and back to the heart. Systemic circulation:
Electrical Activity of the Heart Topic Number 2. Introduction ✦ What’s really happening when the heart is stimulated or where does the “electro” in electrocardiography.
Chapter Goals After studying this chapter, students should be able to describe the general functions of the major components of the heart. 2. describe.
Cardiac electrical activity
Erin Catto Blizzard Entertainment Numerical Integration.
Discontinuous Galerkin Methods and Strand Mesh Generation
Cardiovascular Block Cardiac Electric Activity
MEMBRANE POTENTIAL DR. ZAHOOR ALI SHAIKH Lecture
Lecture 2 Membrane potentials Ion channels Hodgkin-Huxley model References: Dayan and Abbott, Gerstner and Kistler,
Electrical Activity of Heart & ECG
Resting Membrane Potential. Membrane Potentials  Electrical signals are the basis for processing information and neuronal response  The impulses are.
P. Ch 48 – Nervous System pt 1.
Nervous System.
© Fluent Inc. 11/24/2015J1 Fluids Review TRN Overview of CFD Solution Methodologies.
The Role of the Bidomain Model of Cardiac Tissue in the Dynamics of Phase Singularities Jianfeng Lv and Sima Setayeshgar Department of Physics, Indiana.
Membrane potential  Potential difference (voltage) across the cell membrane.  In all cells of the body (excitable and non- excitable).  Caused by ion.
Role of the Bidomain Model of Cardiac Tissue in the Dynamics of Phase Singularities Jianfeng Lv and Sima Setayeshgar Department of Physics, Indiana University,
The role of the bidomain model of cardiac tissue in the dynamics of phase singularities Jianfeng Lv and Sima Setayeshgar Department of Physics, Indiana.
Structural description of the biological membrane. Physical property of biological membrane.
ACTION POTENTIALS Chapter 11 Part 2 HONORS ANATOMY & PHYSIOLOGY.
Role of the Bidomain Model of Cardiac Tissue in the Dynamics of Phase Singularities Jianfeng Lv and Sima Setayeshgar Department of Physics, Indiana University,
Dr. Mona Soliman, MBBS, MSc, PhD Associate Professor Department of Physiology Chair of Cardiovascular Block College of Medicine King Saud University.
Numerical Implementation Diffusion Tensor Governing Equations From Idealized to Fully- Realistic Geometrical modeling Phase Singularities Model Construction.
Game Technology Animation V Generate motion of objects using numerical simulation methods Physically Based Animation.
Electrical Wave Propagation in a Minimally Realistic Fiber Architecture Model of the Left Ventricle Xianfeng Song, Department of Physics, Indiana University.
Nonlinear Dynamics and Chaos in Cardiac Arrhythmias Violet Redensek.
PHYSIOLOGY OF THE NERVOUS SYSTEM Neurons are IRRITABLE Ability to respond to a stimulus! (What’s a stimulus?)
ECG Simulation NCRR Overview Technology for the ECG Simulation project CardioWave BioPSE project background Tools developed to date Tools for the next.
Role of the Bidomain Model of Cardiac Tissue in the Dynamics of Phase Singularities Jianfeng Lv and Sima Setayeshgar Department of Physics, Indiana University,
The Role of the Bidomain Model of Cardiac Tissue in the Dynamics of Phase Singularities Jianfeng Lv and Sima Setayeshgar Department of Physics, Indiana.
1 Topics to be addressed: Blood Anatomy of Blood Vessels Anatomy of the Heart The Conduction System The Cardiac Cycle Cardiodynamics Blood Flow and its.
Modeling the Action Potential in a Squid Giant Axon
CHAPTER 2 - EXPLICIT TRANSIENT DYNAMIC ANALYSYS
Break-up (>= 2 filaments)
NEURON Simulation package
Break-up (>= 2 filaments)
Nerve Action Potential :2
W.F. Witkowksi, et al., Nature 392, 78 (1998)
Break-up (>= 2 filaments)
Cardiac Muscle Physiology
Antiarrhythmic drugs [,æntiə'riðmik] 抗心律失常药
Action potentials.
Break-up (>= 2 filaments)
Comparison of CFEM and DG methods
Propagated Signaling: The Action Potential
Break-up (>= 2 filaments)
Presentation transcript:

Preventing Sudden Cardiac Death Rob Blake NA Seminar

Outline Biology lesson Cellular modeling Tissue modeling Summary

Sudden Cardiac Arrest Heart falls out of rhythm  Blood stops flowing, body dies  6 minutes - brain damage  10 minutes - death ~335,000 deaths each year Caused by electrical abnormalities  Hard to predict  Healthy people at risk

Mechanisms of contraction Normal contraction  SA node  AV node  Purkinje fibers  Contract from bottom to top All heart tissue is electrically active  Responds like nerve cells to stimuli

Arrhythmia Literally “without rhythm” Electrical feedback Heart can’t pump blood

Movies

Defibrillation Idea:  Introduce large stimulus  Override electrical feedback  After stimulus, heart returns to rest

Problems with Defibrillation Doesn’t work as well as it should  No one really knows why Requires large stimulus in order to work  Damages tissue  Charged particles rip holes through cell membrane  Painful  “Feels like getting kicked in the chest by a donkey”

Experimental Methods Electric Probes  Stick heart with pins, measure electric potential  Con: Can only get low resolution  Con: Pins change electric properties of the heart

Experimental Methods Optical Mapping  Insert dye that glows when electric potential changes  Con: Can only observe surface phenomena

Experimental Methods No good way to observe electricity in working heart Heart is still a “black box”

Why Simulation? Perfect measurements of heart interior  Observe internal behavior  Derive hypotheses Cheap Fast

Cell Models Membrane Kinetics  Current created by ion flux

Cell Models C m - membrane capacitance V m - transmembrane voltage  V m =  i -  e I ion - total ion flow through channels  Nerve cell: I ion = I Na +I K +I l

Cell Models Go watch movies!

Behavior Cell activates if V m increases past a threshold (-55mV) ms action potential ms for cell to “recharge” for activation

Gates Control channel resistance Range from 0 (closed) to 1 (open) Given by Open/close rates are often exponential functions Stable time integration methods exist

Complications Cardiac cells much more complex than nerve cells

A simple cardiac model:

About the Equations LRd  115 equations  59 “expensive” function evaluations  exp, log, cos, sqrt  17 differential unknowns, 12 are gates  Extremely nonlinear  Explicit methods  Extremely stiff for high V m  Even with gate stabilization  Requires small timestep during defib shock (~1us)  Output only accurate to about 10%

EasyML Description language for cell membrane models Translator writes C code  Numerically integrates equations  Lookup tables to minimize function evaluations

CS450 project Everyone uses Forward Euler to solve equations  Implementing other methods is too error prone EasyML separates data from implementation  Write new translators that use better integration methods  Use automatic differentiation for stable time integration

Tissue Models

Extracellular space Intracellular space

Bidomain Equations C m - membrane capacitance B m - cellular surface : volume ratio I ion - membrane current  - conductivity tensor  - electric potential V m - transmembrane voltage V m =  i -  e

Bidomain Equations Conductivity tensors vary spatially I ion has state  Independent at every point in domain

Discretizing Ill conditioned! Galerkin FEM (weak formulation)

Discretizing s - Euler integration parameter  s=0 => Forward Euler  s=.5 => Crank Nicholson  s=1 => Backwards Euler Use old timestep for I ion  Too complicated for implicit method

Decoupled system becomes

Memfem Software for solving bidomain equations Things that can vary  Tissue models - any unstructured mesh  Membrane models EasyML models  Stimulation protocols

Memfem: Main Loop Spatial solve for V m  Linear Galerkin FEM  Stable - Backwards Euler, Crank Nicholson ODE integration at every point in the mesh  Unstable - Explicit Methods Update membrane state Calculate I ion Calculate V m I ion VmVm

Memfem: Parallelization Cellular models are trivially parallel PETSc parallelizes matrix solve Additional routines for parallel output and checkpointing

Examples

Summary Cardiac simulation is a rich emerging field  Crucial for hypothesis generation High barrier to entry  Need physiological models  Need working cellular models  Dense terminology Researchers need help!

Unsolved problems Detailed error analysis of tissue modeling  Extremely chaotic Best integration methods for cellular modeling  My CS450 project Your ideas?