Putting “tags” to work Attempting to apply results gained from agent- based social simulation (ABSS) to MAS. Dr David Hales

Slides:



Advertisements
Similar presentations
Reinforcement Learning
Advertisements

Evolving Cooperation in the N-player Prisoner's Dilemma: A Social Network Model Dept Computer Science and Software Engineering Golriz Rezaei Michael Kirley.
Infinitely Repeated Games
Ultimatum Game Two players bargain (anonymously) to divide a fixed amount between them. P1 (proposer) offers a division of the “pie” P2 (responder) decides.
Evolution and Repeated Games D. Fudenberg (Harvard) E. Maskin (IAS, Princeton)
Evolution of Cooperation The importance of being suspicious.
Solving Collective Commons Problems: Future Scenarios for P2P Finance David Hales, University of Szeged, Hungary Diversity in Macro.
Infinitely Repeated Games. In an infinitely repeated game, the application of subgame perfection is different - after any possible history, the continuation.
6-1 LECTURE 6: MULTIAGENT INTERACTIONS An Introduction to MultiAgent Systems
Chapter 14 Infinite Horizon 1.Markov Games 2.Markov Solutions 3.Infinite Horizon Repeated Games 4.Trigger Strategy Solutions 5.Investing in Strategic Capital.
Maynard Smith Revisited: Spatial Mobility and Limited Resources Shaping Population Dynamics and Evolutionary Stable Strategies Pedro Ribeiro de Andrade.
Cooperation in Anonymous Dynamic Social Networks Brendan Lucier University of Toronto Brian Rogers Northwestern University Nicole Immorlica Northwestern.
Tags and Image Scoring for Robust Cooperation By Nathan Griffiths Presented at AAMAS 2008.
1 Lecture 8: Genetic Algorithms Contents : Miming nature The steps of the algorithm –Coosing parents –Reproduction –Mutation Deeper in GA –Stochastic Universal.
6/2/2001 Cooperative Agent Systems: Artificial Agents Play the Ultimatum Game Steven O. Kimbrough Presented at FMEC 2001, Oslo Joint work with Fang Zhong.
Achieving Cooperative Social Behavior Through The Use Of Tags Critical MAS 2004Aviv Zohar.
Evolutionary Games The solution concepts that we have discussed in some detail include strategically dominant solutions equilibrium solutions Pareto optimal.
Human Social Dilemmas Cooperation Between Non-Relatives Complex Evolutionary Problem Repeated Interaction, Conditional Cooperation Human Cooperation Often.
From Natural to Artificial Systems Models of Competition and Cooperation By Rob Cranston, Walter Proseilo, Chau Trinh & Owen Pang.
Evolutionary Games The solution concepts that we have discussed in some detail include strategically dominant solutions equilibrium solutions Pareto optimal.
Beyond the design stance, AgentLink MSEA/ABSS SIG meeting, Barcelona 2003, slide-1 Beyond the Design Stance - losing some control.
Checking and understanding Simulation Behaviour Bruce Edmonds Centre for Policy Modelling Manchester Metropolitan University.
Genetic Algorithm.
University of Bologna, Italy How to cheat BitTorrent and why nobody does Simon Patarin and David Hales University of Bologna ECCS 2006,
Project funded by the Future and Emerging Technologies arm of the IST Programme Recent directions in DELIS / Overview of on-going work David Hales
Cooperation through the endogenous evolution of social structure David Hales & Shade Shutters The Open University & Arizona State University
Changing Perspective… Common themes throughout past papers Repeated simple games with small number of actions Mostly theoretical papers Known available.
Learning in Multiagent systems
Dynamic Games of complete information: Backward Induction and Subgame perfection - Repeated Games -
Project funded by the Future and Emerging Technologies arm of the IST Programme Cooperation with Strangers David Hales Department of.
Linking multi-agent simulation to experiments in economy Re-implementing John Duffy’s model of speculative learning agents.
Example Department of Computer Science University of Bologna Italy ( Decentralised, Evolving, Large-scale Information Systems (DELIS)
Rationality meets the tribe: Some models of cultural group selection David Hales, The Open University Hales, D., (2010) Rationality.
Engineering with Sociological Metaphors: Examples and Prospects University of Bologna This work is partially supported by the European.
SLAC and SLACER: Simple copy & rewire algorithms for trust and cooperation in P2P David Hales, Stefano Arteconi, Ozalp Babaoglu University of Bologna,
Presenter: Chih-Yuan Chou GA-BASED ALGORITHMS FOR FINDING EQUILIBRIUM 1.
Project funded by the Future and Emerging Technologies arm of the IST Programme Socially Inspired Approaches to Evolving Cooperation David Hales
Can Tags Build Working Systems? From MABS to ESOA Attempting to apply results gained from Multi-Agent- Based Social Simulation (MABSS)
P2P Interaction in Socially Intelligent ICT David Hales Delft University of Technology (Currently visiting University of Szeged, Hungary)
Multi-Patch Cooperative Specialists With Tags Can Resist Strong Cheaters, Bruce Edmonds, Feb 2013, ECMS 2013, Aalesund, Norway, slide 1 Multi-Patch Cooperative.
Evolving networks for cooperation Dagstuhl CCT3 DELIS Workshop Sept 3rd-4th 2005 Presented by David Hales University of Bologna, Italy
David Hales (University of Bologna) University of Bologna, Italywww.davidhales.com WARNING! Superficial sociological interpretation followed by simplistic.
Emergent Group-Like Selection in a Peer-to-Peer Network ECCS Conference Paris, Nov. 16 th, 2005 David Hales University of Bologna, Italy
Evolving cooperation in one-time interactions with strangers Tags produce cooperation in the single round prisoner’s dilemma and it’s.
Evolving Social Rationality for MAS using “Tags” Trying to “make things work” by applying results gained from Agent-Based Social Simulation.
Project funded by the Future and Emerging Technologies arm of the IST Programme From Selfish Nodes to Cooperative Networks – Emergent Link-based Incentives.
Project funded by the Future and Emerging Technologies arm of the IST Programme Understanding “tag” systems by comparing “tag” models David Hales
The Evolution of Specialisation in Groups – Tags (again!) David Hales Centre for Policy Modelling, Manchester Metropolitan University, UK.
Game Theory by James Crissey Luis Mendez James Reid.
Socially Inspired Computing Engineering with Social Metaphors.
Evolving P2P overlay networks with Tags, SLAC and SLACER for Cooperation and possibly other things… Saarbrücken SP6 workshop July 19-20th 2005 Presented.
Project funded by the Future and Emerging Technologies arm of the IST Programme Altruism “for free” using Tags David Hales Department.
Evolving Strategies for the Prisoner’s Dilemma Jennifer Golbeck University of Maryland, College Park Department of Computer Science July 23, 2002.
Simple Rewire Protocols for Cooperation in Dynamic Networks David Hales, Stefano Arteconi, Ozalp Babaoglu University of Bologna, Italy Bio-Inspired Workshop,
Evolving Specialisation, Altruism & Group-Level Optimisation Using Tags – The emergence of a group identity? David Hales Centre for Policy Modelling, Manchester.
Evolving Specialisation, Altruism & Group-Level Optimisation Using Tags David Hales Centre for Policy Modelling, Manchester Metropolitan University, UK.
Project funded by the Future and Emerging Technologies arm of the IST Programme Change your tags fast! - A necessary condition for cooperation? David Hales.
Evolution of Cooperation in Mobile Ad Hoc Networks Jeff Hudack (working with some Italian guy)
Emergent Group Selection: Tags, Networks and Society David Hales, The Open University ASU, Thursday, November 29th For more details.
Social Norm, Costly Punishment and the Evolution to Cooperation : Theory, Experiment and Simulation Tongkui Yu 1, 2, Shu-Heng Chen 2, Honggang Li 1* 1.
Indirect Reciprocity in the Selective Play Environment Nobuyuki Takahashi and Rie Mashima Department of Behavioral Science Hokkaido University 08/07/2003.
The Matching Hypothesis
Evolution for Cooperation
Socially Inspired Approaches to Evolving Cooperation
Group Selection Design Pattern
Self-Organising, Open and Cooperative P2P Societies – From Tags to Networks David Hales Department of Computer Science University of.
Evolution for Cooperation
Altruism “for free” using Tags
Evolving cooperation in one-time interactions with strangers
Evolution of human cooperation without reciprocity
Presentation transcript:

Putting “tags” to work Attempting to apply results gained from agent- based social simulation (ABSS) to MAS. Dr David Hales Centre for Policy Modelling (CPM), Manchester Metropolitan University. University of Bologna, Italy 29 th May 2003

Talk Overview – 3 parts Part 1: A simple tag model producing cooperation in the single-round PD Part 2: A simple tag model demonstrating in-group specialisation Part 3: A tentative application of tags to a simulated “warehouse unloading” problem

What are “tags” Holland (1992) discussed tags as powerful “symmetry breaking” mechanism which could be useful for understanding complex “social-like” processes Tags are observable labels or social cues Agents can observe the tags of others Tags evolve in the same way that behavioral traits evolve Agents may evolve behavioral traits that discriminate based on tags

Recent tag models Tags may be bit strings signifying some observable cultural cue (Sugarscape model, Hales Mabs2000) Tags may be a single real number (Riolo, Cohen, Axelrod Nature2001) Earlier work by Riolo showed how tags could improve cooperation between agents playing the IPD. More recent work is focusing on how, even without memory of past interactions, tags can cause seemingly altruistic behavior between strangers

Recent tag models In Hales (Mabs2000) high levels of cooperation evolved using tag game biasing in the single round PD. In Riolo et al (Nature2001) high levels of altruistic donation evolved using a tag toleration mechanism. However, in both these models the agents effectively either “cooperate” or “defect”. In both, groups of agents sharing the same tag form cooperative groups. There is a dynamic formation and dissolution of such groups – groups break down when agents invade them that do not cooperate and exploit them

Tags and the Single-Round Prisoner’s Dilemma Cooperation with strangers without reciprocity

A quick note on methodology The model to be presented was found by searching (automatically) a large (10 17 ) space of possible models. Automated intelligent searching of the space was implemented. Machine Learning tools were used to identify the characteristics of models which produced desirable results (high cooperation in this case) Full details at

Why study cooperation? Many hard to explain cooperative interactions in human societies Production of large-scale open artificial agent based systems More generally, how low level entities can come to form internally cooperative higher level entities

Assumptions Agents are greedy (change behaviour to maximise utility) Agents are stupid (bounded rationality) Agents are envious (observe if others are getting more utility than themselves) Agents are imitators (copy behaviour of those they envy)

The Prisoner’s Dilemma CD C D Player 1 Player 2 R R P P T S T S Given: T > R > P > S and 2R > T + S

Payoff values Temptation T > 1 (say, 1.5) Reward R = 1 Punishment (P) and Sucker (S) set to small values (say, and ) Hence T > R > P > S and 2R > T + S

A one bit agent An agent represented by a single bit A value of “1” indicates the agent will cooperate in a game interaction A value of “0” indicates the agent will defect in a game interaction The value is not visible to other agents

An evolutionary algorithm Initialise all agents with randomly selected strategies LOOP some number of generations LOOP for each agent (a) in the population Select a game partner (b) at random from the population Agent (a) and (b) invoke their strategies receiving the appropriate payoff END LOOP Reproduce agents in proportion to their average payoff with some small probability of mutation (M) END LOOP

The obvious result Agents quickly become all defectors A defector always does at least as well as his opponent and sometimes better This is the “Nash Equilibrium” for the single round PD game The evolutionary algorithm therefore evolves the “rational” strategy

How can cooperation evolve? Repeated interaction when agents remember the last strategy played by opponent Interaction restricted to spatial neighbours Agents observe the interactions of others before playing themselves (image and reputation) However, these require agents with the ability to identify individuals or have strict spatial structures imposed on interaction

An agent with “tags” Take the “one bit agent” and add extra bits “tags” which have no effect on the strategy played but are observable by other agents 1010 Strategy bit not observable Tag bits observable

Bias interaction by tag Change the evolutionary algorithm so agents bias their interaction towards those sharing the same tag bit pattern When an agent selects a game partner it is allowed some number (F) of refusals if the tags of the partner do not match After F refusals game interaction is forced on the next selected agent During reproduction mutation is applied to both strategy bit and tag bits with same probability

Parameter values and measures Population size (N) = 100 Length of tag (L) = [2..64] bits Refusals allowed (F) = 1000 Mutation rate (M) = PD payoffs T = [1..2], R =1, P > S = small Execute algorithm for 100,000 generations Measure cooperation as proportion of total game interactions which are mutually cooperative

Results T L cooperation Cooperation increases: as T decreases as L increases T = temptation payoff L = length of tag in bits Each bar an average of 5 runs to 100,000 generations with different initial random number seeds

What’s happening? We can consider agents holding identical tags to be sharing the corner of a hyper- cube Interaction is limited to agents sharing a corner (identical tag bits) Therefore cooperative “groups” are emerging in these corners

A hypercube for 4 bit tags To visualise the process in time we produce a graph in which each horizontal line represents a single unique corner of the hypercube (set of unique tag bits) We colour each line to indicate if it is occupied by all cooperative, all defective, mixed or no agents

Visualising the process

What’s happening? Defectors only do better than cooperators if they are in a mixed group (have cooperators to exploit) But by exploiting those cooperators they turn the group into all defectors quickly Agents in an “all defective group” do worse than agents in an “all cooperative group” So long as an all cooperative group exists the agents within it will out perform an all defective group, thus reproducing the group – mutation of tag bits spreads the cooperative group to neigbouring corners of the hypercube

Cooperation from total defection If we start the run such that all strategy bits are set to defection, does cooperation evolve? Yes, from observation of the runs, cooperation emerges as soon as two agents sharing tag bits cooperate We can produce a crude analytical model predicting how long before cooperation evolves

Cooperation from total defection Generations before cooperation Number of agents (n) L=32, m=0.001

Some conclusions A very simple mechanism can produce cooperation between strangers in the single round PD game Culturally, the tags can be interpreted as “social cues” or “cultural markers” which identify some kind of cultural group The “groups” exist in an abstract “tag space” not real physical space The easy movement between groups (via mutation and imitation) but strict game interaction within groups is the key to producing high cooperation

Part 2:Evolving Specialisation, Using Tags Towards a kind of “group selection”

What else can tags do? These previous models show that cooperation can evolve in groups with tags – overcoming commons dilemmas But, can tags support the formation of groups in which agents perform specialised functions – supporting each other to exploit the environment as a “team” or “productive unit” We extended the Riolo et al model to test this

The model Agents consist of a tag (real number), a tolerance (real number) and a skill (integer) Each agent is awarded some of resources in each cycle. Resources associated with randomly selected skill An agent can only “harvest” a resource matching it’s own skill If it can not harvest the resource, it may donate the resource to another agent (if it can find one) that matches its tag

The model An agent is considered to “match” the tags of another if the difference between the tag values is no more than the tolerance value So a high tolerance means “donate to any agent” and a low tolerance means “only donate to those with similar tag value” When an agent attempts to make a donation it selects another agent from the population compares tags for a match and then passes the resource if the receiving agents has the required skill value

The model In the initial model, there are 2-skills, 100 agents, partner selection involves a single random selection from the population When agents make a successful donation they incur an energy cost (0.1) When an agent successfully harvests a resource it gets a unit of energy (1) After each cycle a tournament selection process based on energy, increases the number of successful agents (high energy) over those with low energy When successful agents are copied, mutation is applied to both tag, tolerance and skill

What will the results tell us? If the donation rate (over time) is non-zero, then we can conclude that: Agents are forming tag groups with a diversity of skills Agents are behaving altruistically, since donation produces immediate costs but does to produce immediate returns Therefore agents (from a myopic individual bounded rationality) form internally specialised altruistic teams

2-skills, averages of 30 runs to 30,000 generations

Results – what does it mean? A significant level of donation – confirming specialisation and altruism (of a sort!) But not so high, if we instead of selecting potential donation partners at random we use a “smart” matching method then significant increases in the donation rate are seen (previous slide) This smart matching can even support higher donor costs

5-skills, averages of 30 runs to 30,000 generations

Results – what does it mean? The random (or dumb) matching goes lower The smart matching goes lower too but still stays high and recovers quickly as the number of resource awards increases Hence, it would seem that to support a higher degree of specialisation (more skills) smart matching is required

Conclusions Agents form groups based on tag similarity, containing diverse skills, donating resources to between each other, to efficiently exploit the environment – for the good of the group This happens even though individuals are selected on the basis of their individual utility Can such models help us to understand how early social groups formed with specialised roles? Group distinguishing abilities (smart searching) would appear to be important Future work: does smart searching evolve (see Hales yes)? What about putting agents in social networks = smart is cheap? The Tag Clone issue! What are we really seeing here (see Hales 2003 – forthcoming JASSS special issue)?

Part 3: Evolving “Social Rationality” in MAS using Tags Tentative application to a simulated MAS

What is “social Rationality” Hogg and Jennings (1997) define it as: “Principle of Social Rationality: If a socially rational agent can perform an action whose joint benefit is greater than its joint loss, then it may select that action.” Kalenka and Jennings (1999) compare “individually rational” and “socially rational” agents in a simulated warehouse unloading scenario (where simulated robots must decide if to give help to others or not).

Warehouse scenario 10 unloading bays – each can hold a truck 5 robots are assigned to each bay When a bay is empty trucks arrive with probability p and size s (in each cycle) Robots unload at a constant rate. The size s is proportional to the unloading time The time a bay remains empty is inversely proportional to p Agents (robots) are represented by triples of (tag, L, N) – where tag is integer [1..500] and L and N are Boolean values.

Warehouse scenario Robots are rewarded based on the quality of goods unloaded from their bay in each cycle Each bay starts empty, a truck arrives with probability p and leaves when fully unloaded In each cycle each robot can perform 5 units of unloading For each unit of unloading, if a robot has a truck in its bay then it asks one other robot for help in unloading – it does this by selecting a randomly selected agent with the same tag (if one exists) or a randomly selected agent from the whole population. If selected agent has L set and has truck in own bay then mark as potential helper If selected agent has N set and has no truck to unload then mark as potential helper For each unit of unloading, if the agent is marked as a potential helper it selected randomly and one of the agents that asked for help and helps it to unload rather than attending to it’s own job.

Outline Algorithm LOOP each cycle LOOP 5 times LOOP for each robot (A) IF lorry in own bay THEN ask robot (B) with same tag (or randomly choose if no tag match) IF (B) has lorry in its bay THEN (B) marked as a potential helper with A’s lorry if L is set ELSE (B) marked as potential helper for (A)’s lorry if N is set IF (A) marked as potential helper THEN randomly choose another who requested help. ELSE (A) unloads own lorry or sits idle End LOOP Each robot’s fitness = amount unloaded in own bay LOOP for size of population Probabilistically choose a robot in proportion to fitness Mutate each of (tag, N, L) probability 0.1 End LOOP

A Comparison Compared this tag based algorithm to populations in which all agents were “selfish” or “social” Selfish agents never help others Social agents help if they are idle and asked Each simulation was run for 500 cycles (allowing each robot to unload 2500 units) Percentage of robot time idle was recorded Simulations were run over 3 different loading scenarios (values of p and s)

Results

Discussion The tag strategy appears to outperform the hardwired social strategy when unloading is sporadic (low p and high s) Speculate that the tag strategy allows (at least some) agents to abandon their own trucks when a new truck arrives in another bay – which could help More analysis needed to understand the dynamics and more runs needed to confirm the conclusion Have the robots “self-organised” a superior solution to the hand-coded social one?

Overall conclusions Tag models show promise but much further work required (simulation) Network applications need to be identified Current work has mainly focused on biological or social interpretations The “inverse scaling” and decentralised nature of tag processes – if harnessed – could produce a step-change in decentralise, adaptive applications But there’s a lot of work to do…..