The properties of starless cores in intermediate-/high-mass protoclusters Francesco Fontani European Southern Observatory (ESO) Institut de RadioAstronomie Millimetrique (IRAM) M. Audard ISDC & Observatoire de Geneve T.L. Bourke Harvard-Smithsonian CfA, Boston G. Busquet Universitat de Barcelona P. Caselli University of Leeds R. Cesaroni INAF-OAA, Firenze F. Gueth IRAM, Grenoble I. Jimenez-Serra Harvard-Smithsonian CfA, Boston A. Isella California Institute of Technology A. Palau Universitat de Barcelona A. Sanchez-Monge Universitat de Barcelona J. Tan University of Florida L. Testi ESO Q. Zhang Harvard-Smithsonian CfA, Boston
Starless cores: initial conditions of SF! what we know and what we don’t know Isolated, low-mass SFRs: basic physics: T ~ 10 K, n ~ 10 6 cm -3, T and n profiles chemistry: [D/H] ~ 0.1, CO depletion kinematics: Δv ~ thermal, infall (e.g. Caselli et al. 2002; Crapsi et al. 2005;Kirk et al. 2007; review = Bergin & Tafalla 2007) Clustered, low-mass SFRs: basic physics: T ~ 13 K, n ~ 10 6 cm -3, T & n profiles? chemistry: [D/H] ~ ?, CO depletion? kinematics: Δv ~ thermal, infall? (e.g. Andre’ et al. 2007, Friesen et al. 2009, Foster et al. 2009; Offner et al. 2008; Rathborne et al. 2008) Clustered, high-mass SFRs: basic physics: ~ T, ~ n chemistry: ~ CO depletion kinematics: ~ Δv (e.g. Palau et al. 2007; Beuther et al. 2007; Beuther & Henning 2009; Zhang et al. 2009) 1- progenitors of massive stars 2- progenitors of low-mass stars in ‘extreme’ environments
(Fontani et al. 2009, A&A, 499, 233) IRAS : an intermediate-/high-mass Protocluster harboring pre-stellar core candidates starless Early-B (proto)star IM protostar protostar?? d ~ 1.8 kpc
1. TEMPERATURE & LINEWIDTHS Protostars C1-a: Tk ~ 21 K C1-b: Tk ~ 22 K C2: Tk ~ 17 K C3: Tk ~ 17 K Starless N: Tk ~ 13 K S: Tk ~ 16 K N S S N (Fontani et al., in preparation) Starless cores in I05345 HOTTER than isolated ones in low-mass SFRs Method: From NH 3 line ratio (Busquet et al. 2009) …and they are dominated by NON-THERMAL MOTIONS σ th ~ 0.05 – 0.15 km s -1
N: N(N 2 D + )/N(N 2 H + ) = 0.1 S: N(N 2 D + )/N(N 2 H + ) = 0.1 M vir = 6 M sun M vir = 3 M sun M X = 9 M sun M X = 2 M sun Green = N 2 H + (PdBI) Grey = 3mm (PdBI) Red = N 2 D + (SMA) 2. CHEMISTRY 1: DEUTERATION Deuterium Fractionation SIMILAR to that measured in isolated pre-stellar cores Fontani et al. (2008)
3. CHEMISTRY 2: N(NH 3 ) vs N(N 2 H + ) N(NH 3 )/N(N 2 H + ) Protostellar C1-a: 37 C1-b: 28 C2: 298 Starless N: 571 S: 416 In low-mass SFRs, NH 3 /N 2 H + higher in less evolved objects: CHEMICAL CLOCK (Caselli et al. 2002; Hotzel et al. 2004; Palau et al. 2007; models of Aikawa et al. 2003) NH 3 /N 2 H + SIMILAR to what’s found in low-mass SFRs Fontani et al. 2010, in preparation
Starless cores in IRAS Palau et al. (2007) Busquet et al. (2010) LINEWIDTH: 0.4 – 1.3 km s -1 (starless) TEMPERATURE: 14 – 19 K (starless) 24 K (protostellar) DEUTERATION, N(NH 2 D)/N(NH 3 ): 0.1 – 0.8 (starless) !!!!!!!!! <0.1 (protostellar) NH 3 /N 2 H + : ~300 (starless) ~50 (protostellar)
IRAS : starless cores in between an outflow and a cavity IRS 2 Grey = NH 3 (1,1) (VLA) White = 1mm cont. (SMA) Image = 2.12μm (2MASS) Palau et al. (2007); Kumar et al. (2002); Beuther et al. (2002) Starless UC HII 0.05 pc d ~ 1.4 kpc
IRAS : new CARMA observations (Fontani et al., in preparation)
IRAS : new CARMA observations (Fontani et al., in preparation)
IRAS : new CARMA observations (Fontani et al., in preparation)
IRAS : new CARMA observations (Fontani et al., in preparation)
NH 2 D condensations : summary A D C B D frac Δv M c (20K) M c (10K) M vir n(H2) NH3/N2H+ km/s M M M x10 6 cm A: B: > 70 C: D: <~2 <~ Line widths Courtesy of A. Palau
IRAS : an UC HII surrounded by dense gas IR (2μm, UKIRT): Kumar et al. (2002) Molecular lines (CARMA): Fontani et al. in prep. 0.1 pc UC HII d ~ 2.6 kpc
Starless cores in IRAS : summary Temperature Line widths NH 3 /N 2 H + Deuteration (NH 2 D/NH 3 ) 0.06 in the northern core < 0.01 elsewhere Courtesy of G. Busquet ~ 100 (starless) >~ 400 (star-forming)
Starless cores in intermediate-/high-mass SFRs: COMPARISON with low-mass SFRs SIMILARITIES: Deuterium fractionation high (but not in IRAS 22134……) ? ?: NH 3 /N 2 H + abundance DIFFERENCES: Kinetic temperature higher Line widths MUCH higher open questions: 1- can these properties be considered ‘typical’ ? IMPROVE STATISTICS 2- other aspects of chemistry? EXPAND SPECTRAL ANALYSIS 3- internal physical/chemical structure? IMPROVE RESOLUTION
Thank you!