Copyright © 2009 Pearson Education, Inc. Lecture 1 – Waves & Sound b) Wave Motion & Properties.

Slides:



Advertisements
Similar presentations
Physics: Principles with Applications, 6th edition
Advertisements

Chapter 11 Oscillations and Waves
Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 1 Chapter 11: Waves Energy Transport.
Physics: Principles with Applications, 6th edition
Objectives Identify how waves transfer energy without transferring matter. Contrast transverse and longitudinal waves. Relate wave speed, wavelength, and.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Waves Energy can be transported by transfer of matter. For example by a thrown object. Energy can also be transported by wave motion without the transfer.
ISAT 241 ANALYTICAL METHODS III Fall 2004 D. J. Lawrence
Copyright © 2009 Pearson Education, Inc. Chapter 15 Wave Motion.
Copyright © 2009 Pearson Education, Inc. Chapter 15 Wave Motion.
Chapter 16 Waves (I) What determines the tones of strings on a guitar?
Chapter 18 Superposition and Standing Waves. Waves vs. Particles Waves are very different from particles. Particles have zero size.Waves have a characteristic.
PHYS 218 sec Review Chap. 15 Mechanical Waves.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
WAVES AND WAVE PHENOMENA Physics 12 Source: Giancoli Chapter 11.
Physics for Scientists and Engineers, with Modern Physics, 4th edition
Chapter 11 Vibrations and Waves Simple Harmonic Motion If an object vibrates or oscillates back and forth over the same path, each cycle taking.
Waves - I Chapter 16 Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Vibrations and Waves Chapter 11.
Chapter 15 Mechanical Waves Modifications by Mike Brotherton.
Vibration and Waves AP Physics Chapter 11.
Harmonic Motion and Waves Chapter 14. Hooke’s Law If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount.
Chapter 11 Waves. MFMcGrawCh-11b-Waves - Revised Chapter 11 Topics Energy Transport by Waves Longitudinal and Transverse Waves Transverse Waves.
Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits.
FCI. Faculty of Computers and Information Fayoum University 2014/ FCI.
Vibrations and Waves Chapter 11.
For this section we start with Hooke’s Law. But we already learned this. (partially)
Chapter 12: Vibrations and Waves Section 1: Simple harmonic motion Section 2: Measuring simple harmonic motion Section 3: Properties of waves Section 4:
Daily Challenge, 10/2 Give 3 examples of motions that are periodic, or repeating.
For this section we start with Hooke’s Law. But we already learned this. (partially)
Chapter 15: Wave Motion 15-3 Energy Transported by Waves 15-4 Mathematical Representation of a Traveling Wave 15-5 The Wave Equation 15-6 The Principle.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 11 Vibrations and Waves. Units of Chapter 11 Simple Harmonic Motion Energy in the Simple Harmonic Oscillator The Period and Sinusoidal Nature.
Wave Mechanics Physics 1. What is a wave? A wave is: an energy-transferring disturbance moves through a material medium or a vacuum.
Wave Motion. Conceptual Example: Wave and Particle Velocity Is the velocity of a wave moving along a cord the same as the velocity of a particle of a.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Lecture Outline Chapter 13 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
Lecture Outline Chapter 13 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
Waves - I Chapter 16 Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
© 2014 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Superposition and Standing Waves
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 11 Vibrations and Waves.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 13 Wave Motion.
Chapter 15: Wave Motion 15-2 Types of Waves: Transverse and Longitudinal 15-3 Energy Transported by Waves 15-4 Mathematical Representation of a Traveling.
Copyright © 2009 Pearson Education, Inc. Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits.
Vibrations and Waves Physics I. Periodic Motion and Simple Harmonic Motion  Periodic Motion - motion that repeats back and forth through a central position.
College Physics, 7th Edition
Chapter 15 Mechanical Waves © 2016 Pearson Education, Inc.
Lecture 11 WAVE.
Physics: Principles with Applications, 6th edition
Chapter 15 Mechanical Waves.
Chapter 11: Waves Energy Transport by Waves
Physics: Principles with Applications, 6th edition
Unit 10: Part 1 Waves.
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
© 2014 John Wiley & Sons, Inc. All rights reserved.
Physics: Principles with Applications, 6th edition
Vibrations and Waves Physics I.
Physics: Principles with Applications, 6th edition
11-3: PROPERTIES OF WAVES.
11-3: PROPERTIES OF WAVES.
Physics for Scientists and Engineers, with Modern Physics, 4th edition
Chapter 15: Wave Motion Chapter opener. Caption: Waves—such as these water waves—spread outward from a source. The source in this case is a small spot.
Physics: Principles with Applications, 6th edition
Wave Mechanics Physics 1.
Physics: Principles with Applications, 6th edition
Contents of Chapter 11 Simple Harmonic Motion—Spring Oscillations
Presentation transcript:

Copyright © 2009 Pearson Education, Inc. Lecture 1 – Waves & Sound b) Wave Motion & Properties

Copyright © 2009 Pearson Education, Inc. Chapter 15 Wave Motion

Copyright © 2009 Pearson Education, Inc. Characteristics of Wave Motion Types of Waves: Transverse and Longitudinal Energy Transported by Waves The Principle of Superposition Interference Standing Waves; Resonance Units of Chapter 15

Copyright © 2009 Pearson Education, Inc. All types of traveling waves transport energy. Study of a single wave pulse shows that it is begun with a vibration and is transmitted through internal forces in the medium. Continuous waves start with vibrations, too. If the vibration is SHM, then the wave will be sinusoidal Characteristics of Wave Motion

Copyright © 2009 Pearson Education, Inc. Wave characteristics: Amplitude, A Wavelength, λ Frequency, f and period, T Wave velocity, 15-1 Characteristics of Wave Motion

Copyright © 2009 Pearson Education, Inc. The motion of particles in a wave can be either perpendicular to the wave direction (transverse) or parallel to it (longitudinal) Types of Waves: Transverse and Longitudinal

Copyright © 2009 Pearson Education, Inc. Sound waves are longitudinal waves: 15-2 Types of Waves: Transverse and Longitudinal

Copyright © 2009 Pearson Education, Inc Types of Waves: Transverse and Longitudinal The velocity of a transverse wave on a cord is given by: As expected, the velocity increases when the tension increases, and decreases when the mass increases.

Copyright © 2009 Pearson Education, Inc Types of Waves: Transverse and Longitudinal The velocity of a longitudinal wave depends on the elastic restoring force of the medium and on the mass density. or

Copyright © 2009 Pearson Education, Inc. Earthquakes produce both longitudinal and transverse waves. Both types can travel through solid material, but only longitudinal waves can propagate through a fluid—in the transverse direction, a fluid has no restoring force. Surface waves are waves that travel along the boundary between two media Types of Waves: Transverse and Longitudinal

Copyright © 2009 Pearson Education, Inc. By looking at the energy of a particle of matter in the medium of a wave, we find: Then, assuming the entire medium has the same density, we find: Therefore, the intensity is proportional to the square of the frequency and to the square of the amplitude Energy Transported by Waves

Copyright © 2009 Pearson Education, Inc. If a wave is able to spread out three- dimensionally from its source, and the medium is uniform, the wave is spherical. Just from geometrical considerations, as long as the power output is constant, we see: 15-3 Energy Transported by Waves

Copyright © 2009 Pearson Education, Inc Energy Transported by Waves. Example 15-4: Earthquake intensity. The intensity of an earthquake P wave traveling through the Earth and detected 100 km from the source is 1.0 x 10 6 W/m 2. What is the intensity of that wave if detected 400 km from the source?

Copyright © 2009 Pearson Education, Inc The Principle of Superposition Superposition: The displacement at any point is the vector sum of the displacements of all waves passing through that point at that instant. Fourier’s theorem: Any complex periodic wave can be written as the sum of sinusoidal waves of different amplitudes, frequencies, and phases.

Copyright © 2009 Pearson Education, Inc The Principle of Superposition Conceptual Example 15-7: Making a square wave. At t = 0, three waves are given by D 1 = A cos kx, D 2 = - 1 / 3 A cos 3kx, and D 3 = 1 / 5 A cos 5kx, where A = 1.0 m and k = 10 m -1. Plot the sum of the three waves from x = -0.4 m to +0.4 m. (These three waves are the first three Fourier components of a “square wave.”)

Copyright © 2009 Pearson Education, Inc. The superposition principle says that when two waves pass through the same point, the displacement is the arithmetic sum of the individual displacements. In the figure below, (a) exhibits destructive interference and (b) exhibits constructive interference Interference

Copyright © 2009 Pearson Education, Inc. These graphs show the sum of two waves. In (a) they add constructively; in (b) they add destructively; and in (c) they add partially destructively Interference

Copyright © 2009 Pearson Education, Inc. Standing waves occur when both ends of a string are fixed. In that case, only waves which are motionless at the ends of the string can persist. There are nodes, where the amplitude is always zero, and antinodes, where the amplitude varies from zero to the maximum value Standing Waves; Resonance

Copyright © 2009 Pearson Education, Inc Standing Waves; Resonance The frequencies of the standing waves on a particular string are called resonant frequencies. They are also referred to as the fundamental and harmonics.

Copyright © 2009 Pearson Education, Inc. The wavelengths and frequencies of standing waves are: 15-9 Standing Waves; Resonance and

Copyright © 2009 Pearson Education, Inc Standing Waves; Resonance Example 15-8: Piano string. A piano string is 1.10 m long and has a mass of 9.00 g. (a) How much tension must the string be under if it is to vibrate at a fundamental frequency of 131 Hz? (b) What are the frequencies of the first four harmonics?

Copyright © 2009 Pearson Education, Inc Standing Waves; Resonance Example 15-9: Wave forms. Two waves traveling in opposite directions on a string fixed at x = 0 are described by the functions D 1 = (0.20 m)sin(2.0 x – 4.0 t ) and D 2 = (0.20m)sin(2.0 x t ) (where x is in m, t is in s), and they produce a standing wave pattern. Determine (a) the function for the standing wave, (b) the maximum amplitude at x = 0.45 m, (c) where the other end is fixed ( x > 0), (d) the maximum amplitude, and where it occurs.

Copyright © 2009 Pearson Education, Inc. Vibrating objects are sources of waves, which may be either pulses or continuous. Wavelength: distance between successive crests Frequency: number of crests that pass a given point per unit time Amplitude: maximum height of crest Wave velocity: Summary of Chapter 15

Copyright © 2009 Pearson Education, Inc. Transverse wave: oscillations perpendicular to direction of wave motion Longitudinal wave: oscillations parallel to direction of wave motion Intensity: energy per unit time crossing unit area (W/m 2 ): Angle of reflection is equal to angle of incidence Summary of Chapter 15

Copyright © 2009 Pearson Education, Inc. When two waves pass through the same region of space, they interfere. Interference may be either constructive or destructive. Standing waves can be produced on a string with both ends fixed. The waves that persist are at the resonant frequencies. Nodes occur where there is no motion; antinodes where the amplitude is maximum. Summary of Chapter 15