      H-13 

Slides:



Advertisements
Similar presentations
      H-13 
Advertisements

1 /23 M.Chrzanowski: Strength of Materials SM2-05: Composed bending COMPOSED BENDING (Eccentric tension/compression)
  Residual Stress Build Up Baseline NADCA Test Determine how quickly stress builds? What happens when tensile drops?
Example: Potential Difference of Point Charges Consider a point charge q. What is the potential difference between point x 1 and point x 2 ? q x2x2 x1x1.
Joints and Shear Fractures
SOLVING LOGARITHMIC AND INDICES PROBLEM. Solving equation in the form of a x = a y Example: 3 2x = 27 = 3 3 By comparing index: 2x = 3 If a x = a y then.
Moon Phases.
Geometry Equations of a Circle.
Polynomial Functions and Models Section 5.1. Polynomial Functions.
Earthquakes pg 123.   Seismometer- an instrument that measures earthquakes  Earthquake- is a series of low frequency shock waves traveling through.
Solving Equations with Logs Day 2. Solving equations with only one logarithm in it: If it is not base 10 and you can’t use your calculator, then the only.
T.M.F.T: Thermal Mechanical Fatigue Testing Wale Adewole Siyé Baker Heriberto Cortes Wesley Hawk Ashley McKnight.
Complete the Accounting Cycle.  Revenue, Expenses, Withdrawals  Temporary accounts are closed out (to the capital account) at the end of every cycle.
      H-13 
Square Pyramid (cut). Cut Square Pyramid - Problem The given views show the Front Elevation and unfinished Plan of a cut square pyramid. Draw the following.
Chapter 1: Square Roots and the Pythagorean Theorem 1.2 Square Roots.
Volume of Cylinders, Cones, and Spheres. Warm Up: Find the area of: A circle with a radius of 3cm. A rectangle with side lengths of 4ft and 7ft. A square.
5. Diameter of Cells (continued) Return to Toolkit A.Open the unhealthy blood image, and set the magnification to 80x. B.Click on the ruler icon in the.
This is the situation at the start of your experiment. The entire system is at vacuum, and the mercury is at the bottom part of the Toepler pump. From.
Welding Design 1998/MJ1/MatJoin2/1 Design. Lesson Objectives When you finish this lesson you will understand: Mechanical and Physical Properties (structure.
RAKING MOULDS by Greg Cheetham. Start with an original mould with square corners as it will sit in the square corner of the side wall and raked ceiling.
      H-13 
Goal: To understand the HR diagram
Mr. Stanish’s Class. HALF OF THE MOON IS ALWAYS LIT UP BY THE SUN. AS THE MOON ORBITS THE EARTH, WE SEE DIFFERENT PARTS OF THE LIGHTED AREA.
First you start off with a square piece of paper and lay it out on the blank side.
Example 1: Round the following number to the nearest hundred. 5,368.
Or Would that be Concentration Stress?
Moon Phases. Student Objective Relate the earths movement and the moons orbit to the observed clinical phases of the moon.
 B = BA Cos  Example 1.1 A coil consists of 200 turns of wire. Each turn is a square of side 18 cm, and a uniform magnetic field directed.
Finding the area of circles
DIRECT and INDIRECT VARIATION ADV130 DIRECT VARIATION: A varies directly as B indicates a direct ratio where 2 things increase or decrease at the same.
Section 9-2 Graphing Circles 1 General form for a circle Represents the center of the circle Represents a point on the circle Represents the radius of.
Oak-Land Junior High Geometry Ch. 5 Presented by: Mrs. Haugan Math.
Goal: To understand the HR diagram Objectives: 1)Recap of magnitude scale 2)To understand the Relationship between Temperature, color, and color magnitude.
Station 1: Using Beakers 1.Look at the markings on the sides of the beakers. 2.Which one would you use to measure out 300 mL of water? 3.Now fill it to.
+ Completing the Square and Vertex Form. + Completing the Square.
What is wave? A wave is a disturbance that moves from one place to another through a medium.
These are polygons: These are not polygons: NOT Polygons POLYGONS! What makes a polygon? Compare them and see! Go back?
9.5 Factoring the Difference of Squares. Difference of Two Squares Must be in (a 2 - b 2 ) form a and b are any monomial (a 2 – b 2 ) = (a + b)(a – b)
Formulas. Demonstrate a 2 + 2ab + b 2 = (a + b) 2 Find the area of the big square by adding up the areas of the 2 squares and 2 rectangles: a 2 + ab +
Free Fall Acceleration due to Gravity. Free Fall l What causes things to fall? l How fast do things fall? l How far do things fall in a given time?
Date of download: 10/10/2017 Copyright © ASME. All rights reserved.
The Refraction of Light 1
Playing W ith Polygons.
Mechanical Properties
-simple state of stress
Principles of a Grid Reference
Fortune Teller Directions
INTERACTIVE WHITEBOARD
Square and Cube Numbers
Axially loaded columns
3.6 Mathematical Models: Constructing Functions
التعامل مع ضغوطات العمل إعداد وتقديم إقبال المطيري
Mar 5, 2003 Residual Stress Report
2.7 Mathematical Models: Constructing Functions
Section 2.5 notes Measures of Variation
Moon Phases.
Moon Phases.
EDLC(Embedded system Development Life Cycle ).
Fortune Teller Directions
Equivalent Fractions and Simplest Form (or Lowest Terms)
Activity # 4 – Water Cycle
Moon Phases.
Moon Phases.
½ of 6 = 3.
Moon Phases.
The Refraction of Light 1
2.7 Mathematical Models: Constructing Functions
Playing W ith Polygons John Mott CEP811.
Activity # 4 – Water Cycle
Presentation transcript:

      H-13 

         

       

      

       

         

           

          

           

             H-13 Dip Tank Specimen 2” each side 7” All corners square +.003” to -.003” All corners have.010” radius

                   H-13 Dip Tank Specimen 2” each side 7” All corners square +.003” to -.003” All corners have.010” radius    

        

                   

 H-13 Dip Tank Specimen 2” each side All corners square +.003” to -.003” All corners have.010” radius             3.5” 1.0” Side 7 Side 5 Side 1 1”.5” Side 3

 All but 4 measurements indicate compression

 Compressive Stress turns to Tensile

 Tensile stress values reduced

 Tensile stress again increasing

 Tensile stress approaching values seen at 10 cycles

 Tensile stress continuing to increase

 Tensile stresses at highest levels

 Tensile stress drop off again – by larger amount









  Stress v/s Cycles Normal Stress v/s Cycles Logarithmic (cannot be zero)

 ?          

              

         

          

 H-13 