InAs Inserted HEMT 2004.06.16 연성진.

Slides:



Advertisements
Similar presentations
Contact Modeling and Analysis of InAs HEMT Seung Hyun Park, Mehdi Salmani-Jelodar, Hong-Hyun Park, Sebastian Steiger, Michael Povoltsky, Tillmann Kubis,
Advertisements

P-N JUNCTION.
The Gunn Diode.
1 Analysis of Strained-Si Device including Quantum Effect Fujitsu Laboratories Ltd. Ryo Tanabe Takahiro Yamasaki Yoshio Ashizawa Hideki Oka
High Electron Mobility Transistors
Carrier Transport Phenomena
EE 230: Optical Fiber Communication Lecture 11 From the movie Warriors of the Net Detectors.
Metal Semiconductor Field Effect Transistors
1 Sachs et. al. IEEE Trans. Nuclear Science NS-31, 1249 (1984) Threshold Shift vs Gate Oxide Thickness Hole removal process by tunneling in thin-oxide.
1 Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh Mishra ECE and Materials Departments University of California, Santa Barbara, CA 2011 Device Research.
1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,
9. Semiconductors Optics Absorption and gain in semiconductors Principle of semiconductor lasers (diode lasers) Low dimensional materials: Quantum wells,
The state-of-the-art InP-based HEMTs
1 Bipolar Junction Transistor Models Professor K.N.Bhat Center for Excellence in Nanoelectronics ECE Department Indian Institute of Science Bangalore-560.
Chapter 6 Field Effect Transistors 6.1 Transistor Operation 6.2 The Junction FET 6.3 The Metal-Semiconductor FET 6.4 The Metal-Insulator-Semiconductor.
Chapter 6 Photodetectors.
High Electron Mobility Transistors (HEMT)
Norhayati Soin 06 KEEE 4426 WEEK 7/1 6/02/2006 CHAPTER 2 WEEK 7 CHAPTER 2 MOSFETS I-V CHARACTERISTICS CHAPTER 2.
Chapter 5: Field Effect Transistor
280 GHz f T InP DHBT with 1.2  m 2 base-emitter junction area in MBE Regrown-Emitter Technology Yun Wei*, Dennis W. Scott, Yingda Dong, Arthur C. Gossard,
SOGANG UNIVERSITY SOGANG UNIVERSITY. SEMICONDUCTOR DEVICE LAB. Bipolar Junction Transistor (1) SD Lab. SOGANG Univ. BYUNGSOO KIM.
InAs Inserted Channel HEMT MDCL 이 종 원.
NDR & The Gunn Effect. For direct bandgap materials, like GaAs: v d vs. E peaks before saturation & decreases again, after which it finally saturates.
ELECT /01/03 SiC basic properties The basic properties of SiC makes it a material of choice for fabricating devices operating at high power and high.
Avalanche Transit Time Devices
Leakage current of device HEMT versus MOSFET 이진식.
Introduction to FinFet
Introduction Trapped Plasma Avalanche Triggered Transit mode Prager
指導教授:劉致為 博士 學生:魏潔瑩 台灣大學電子工程學研究所
ENE 311 Lecture 9.
Grace Xing---EE30357 (Semiconductors II: Devices) 1 EE 30357: Semiconductors II: Devices Lecture Note #19 (02/27/09) MOS Field Effect Transistors Grace.
Revision Chapter 5.
JFETs, MESFETs, and MODFETs
University of California Santa Barbara Yingda Dong Molecular Beam Epitaxy of Low Resistance Polycrystalline P-Type GaSb Y. Dong, D. Scott, Y. Wei, A.C.
University of California Santa Barbara Yingda Dong Characterization of Contact Resistivity on InAs/GaSb Interface Y. Dong, D. Scott, A.C. Gossard and M.J.
ECE 4339 L. Trombetta ECE 4339: Physical Principles of Solid State Devices Len Trombetta Summer 2007 Chapters 16-17: MOS Introduction and MOSFET Basics.
The New Single-silicon TFTs Structure for Kink- current Suppression with Symmetric Dual-Gate by Three Split Floating N+ Zones Dept. of Electrical Engineering,
HW (Also, use google scholar to find one or two well cited papers on symmetric models of MOSFET, and quickly study them.)
High speed (207 GHz f  ), Low Thermal Resistance, High Current Density Metamorphic InP/InGaAs/InP DHBTs grown on a GaAs Substrate Y.M. Kim, M. Dahlstrǒm,
Si/SiGe(C) Heterostructures S. H. Huang Dept. of E. E., NTU.
University of California, Santa Barbara
4H-SIC DMOSFET AND SILICON CARBIDE ACCUMULATION-MODE LATERALLY DIFFUSED MOSFET Archana N- 09MQ /10/2010 PSG COLLEGE OF TECHNOLOGY ME – Power Electronics.
C. Kadow, J.-U. Bae, M. Dahlstrom, M. Rodwell, A. C. Gossard *University of California, Santa Barbara G. Nagy, J. Bergman, B. Brar, G. Sullivan Rockwell.
Introduction to semiconductor technology. Outline –6 Junctions Metal-semiconductor junctions –6 Field effect transistors JFET and MOS transistors Ideal.
Millimeter-wave Device & Circuit Lab. (MDCL) Non-Alloyed Ohmic Contact in HEMTs Microwave devices 노 훈 희  Introduction  Ohmic.
Principles of Semiconductor Devices ( 집적 회로 소자 ) Principles of Semiconductor Devices ( 집적 회로 소자 ) Hanyang University Division of Electronics & Computer.
DOUBLE-GATE DEVICES AND ANALYSIS 발표자 : 이주용
Fatemeh (Samira) Soltani University of Victoria June 11 th
Review of Semiconductor Devices
Microwave Device Term Project
1200V 4H-SiC MOSFETs for High Efficiency Energy Storage System 2016 Kwangwoon IT Exhibition.
Application of photodiodes
Contents GaAs HEMTs overview RF (Radio Frequency) characteristics
Electronics & Communication Engineering
Graphene Based Transistors-Theory and Operation; Development State
Bipolar Junction Transistors and Heterojunction Bipolar Transistors
ECE 695 Discussion Session GaN HEMT Technology – Recent Advances
Contact Resistance Modeling and Analysis of HEMT Devices S. H. Park, H
Lower Limits To Specific Contact Resistivity
Metal Semiconductor Field Effect Transistors
VLSI design Short channel Effects in Deep Submicron CMOS
Device Structure & Simulation
Contact Resistance Modeling in HEMT Devices
Photodetectors.
A p-n junction is not a device
Other FET’s and Optoelectronic Devices
Nanowire Gate-All-Around (GAA) FETs
Sung June Kim Chapter 19. MODERN FET STRUCTURES Sung June Kim
Short channel effects Zewei Ding.
Presentation transcript:

InAs Inserted HEMT 2004.06.16 연성진

contents 1.Introduction 2.Structure & Device performance 3.Improvement scheme

InGaAs/InAlAs HEMT low noise and high frequency device Conduction Band 2DEG Fermi Level Energy band diagram of a HEMT low noise and high frequency device high electron mobility & high sheet carrier density high saturation drift velocity Material Bandgap Energy (eV) Electron Mobility (cm2/V·s) Peak Velocity (cm/s) Si 1.13 1,300 1.0x107 Ge 0.76 3,800 - GaAs 1.42 8,500 2.0x107 InP 1.26 4,600 2.7x107 InAs 0.35 27,000 4.2x107 In0.53GaAs 0.75 12,000 2.9x107

Channel structure Lower band gap material as channel material: InGaAs channel InAs channel Lower band gap material as channel material: Higher Electron confinement Higher mobility Lower noise Lower sheet resistance higher saturation drift velocity

InAs inserted HEMT For Higher gain Higher frequency characteristics Cap InGaAs Cap InGaAs Barrier InAlAs Barrier InAlAs Channel InGaAs Channel InGaAs SubChannel InAs Channel InGaAs Buffer InAlAs Buffer InAlAs Substrate InP Substrate InP InGaAs/InAlAs HEMT InAs Inserted HEMT For Higher gain Higher frequency characteristics

Channel engineering Channel total thickness: 300Å Target: Higher mobility Variable: InAs thickness, Upper InGaAs thickness Dependence on growth tech.

Device performance 0.1um T-Gate fT=290GHz @ Vds=0.5V Low drain bias voltage limitation owing to the increased output conductance

Low drain bias voltage limitation Low on-state breakdown Bias sweep limitation Drastic increment of output conductance Low Fmax By Impact ionization!

Impact Ionization process Hole accumulation 1. Impact Ionization 2. Electron-hole pair is generated 3. the hole is attracted to source region 4. hole accumulation in source region 5. electron is attracted from source by accumulated hole Carrier multiplication Positive Feedback

Lowering Impact Ionization rate Composite channel with low I.I threshold energy material Channel quantization

Composite channel (with low I.I threshold energy material ) Impact ionization threshold energy in InP is higher than in InGaAs or InAs wider band gap energy larger electron effective mass. => contribute to decreased impact ionization effects

InGaAs/InP composite channel HEMT Advantage of composite channel with InP: InGaAs or InAs (high mobility at low fields) InP (low impact- ionization, high saturation velocity)

Channel quantization Channel quantization with decreasing channel thickness Enhancement of the channel bandgap Increment of threshold energy for i.i =>reduces impact ionization effects in on-state breakdown

Application to InAs(1) Increment of Effective bandgap Reduction of impact Ionization hole current Reduction of saturation current level Composite channel

Application to InAs(2) Structure A: L1=9nm, (single side doped) Structure B: L1=2nm, (single side doped) Structure C: L1=2nm, (double side doped) Structure B Structure C

Conclusion InAs Inserted HEMT Lowering Impact Ionization rate Merit: Higher Gm Higher Ft Problem: Low bias voltage limitation (Low On-state breakdown voltage) Lowering Impact Ionization rate Composite channel Channel quantization

Reference 1. Suppression of kink phenomenon in ultra-high-speed strained InAs- inserted E-mode HEMTs with a new 0.1 /spl mu/m Y-shaped Pt-buried gate and their impacts on device performance Dae-Hyun Kim; Tae-Woo Kim; Hun-Hee Noh; Jae-Hak Lee; Kwang-Seok Seo; Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International 13-15 Dec. 2004 Page(s):1027 - 1030 2. First principles band structure calculation and electron transport for strained InAs Hori, Y.; Miyamoto, Y.; Ando, Y.; Sugino, O.; Indium Phosphide and Related Materials, 1998 International Conference on , 11-15 May 1998 Pages:104 - 107 3. Improved InAlAs/InGaAs HEMT characteristics by inserting an InAs layer into the InGaAs channel Akazaki, T.; Arai, K.; Enoki, T.; Ishii, Y.; Electron Device Letters, IEEE , Volume: 13 , Issue: 6 , June 1992 Pages:325 - 327 4. MBE growth of double-sided doped InAlAs/InGaAs HEMTs with an InAs layer inserted in the channel  • ARTICLE Journal of Crystal Growth, Volumes 175-176, Part 2, 1 May 1997, Pages 915-918 M. Sexl, G. Böhm, D. Xu, H. Heiß, S. Kraus, G. Tränkle and G. Weimann 5. Impact of subchannel design on DC and RF performance of 0.1 μm MODFETs with InAs-inserted channel Xu, D.; Osaka, J.; Suemitsu, T.; Umeda, Y.; Yamane, Y.; Ishii, Y.; Electronics Letters , Volume: 34 , Issue: 20 , 1 Oct. 1998 Pages:1976 - 1977 6. High electron mobility 18,300 cm2/V·s InAlAs/InGaAs pseudomorphic structure by channel indium composition modulation Nakayama, T.; Miyamoto, H.; Oishi, E.; Samoto, N.; Indium Phosphide and Related Materials, 1995. Conference Proceedings., Seventh International Conference on , 9-13 May 1995 Pages:733 - 736