Estimation of IQ vector components of RF field - Theory and implementation M. Grecki, T. Jeżyński, A. Brandt.

Slides:



Advertisements
Similar presentations
Mini-Lecture 8 Intellectual Property. Agenda Discussion of Lab7 Solutions and lessons learned Intellectual Property Description of class agenda from this.
Advertisements

Lorentz force detuning measurements on the CEA cavity
Digital Control Systems INTRODUCTION. Introduction What is a control system? Objective: To make the system OUTPUT and the desired REFERENCE as close as.
Digital RF Stabilization System Based on MicroTCA Technology - Libera LLRF Robert Černe May 2010, RT10, Lisboa
Design Goal Design an Analog-to-Digital Conversion chip to meet demands of high quality voice applications such as: Digital Telephony, Digital Hearing.
Test of LLRF at SPARC Marco Bellaveglia INFN – LNF Reporting for:
1 Simple FPGA David, Ronald and Sudha Advisor: Dave Parent 12/05/2005.
Prototype SKA Technologies at Molonglo: 3. Beamformer and Correlator J.D. Bunton Telecommunications and Industrial Physics, CSIRO. Australia. Correlator.
RF Synchronisation Issues
Linac 4 LL RF Hardware Architecture and Design Status
Frank Ludwig / Content : 1 Introduction to noise 2 Noise characterization of the actual LLRF system 3 Conceptional improvements 4 Different sensors.
XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser Wojciech CICHALEWSKI, DMCS-TUL ATCA Review, Monday, Dec , High Level Applications.
All Rights Reserved © Alcatel-Lucent 2006, 2008 Enabling high efficiencies Digital signal conditioning in modern RF transmitters Thomas BOHN June 2008.
Student : Andrey Kuyel Supervised by Mony Orbach Spring 2011 Final Presentation High speed digital systems laboratory High-Throughput FFT Technion - Israel.
Packet Features are enhanced packet management controls (Mark, Restore and Release functions) that facilitate packet retransmission or receive packet discard.
DLS Digital Controller Tony Dobbing Head of Power Supplies Group.
DMCS W.Cichalewski Aug 17 th 1 FLASH - klystron 2 and klystron 5 nonlinearities and linearisation MSc Wojciech CICHALEWSKI.
XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, Warsaw LLRF ATCA.
ECE 4710: Lecture #17 1 Transmitters  Communication Tx  generate modulated signal s(t) at the carrier frequency f c from the modulating information signal.
RF Cavity Simulation for SPL Simulink Model for HP-SPL Extension to LINAC4 at CERN from RF Point of View Acknowledgement: CEA team, in particular O. Piquet.
Grzegorz Jablonski, Technical University of Lodz, Department of Microelectronics and Computer Science XFEL-LLRF-ATCA Meeting, 3-4 December 2007 XFEL The.
1 LLRF Pre-readiness review (26th May, 2009) 27/10/2015 LLRF performance and its limitation based on KEK's experiments Shin Michizono (KEK) KEK’s LLRF.
LLRF ILC GDE Meeting Feb.6,2007 Shin Michizono LLRF - Stability requirements and proposed llrf system - Typical rf perturbations - Achieved stability at.
Introduction to FPGA Created & Presented By Ali Masoudi For Advanced Digital Communication Lab (ADC-Lab) At Isfahan University Of technology (IUT) Department.
LLRF-05 Oct.10,20051 Digital LLRF feedback control system for the J-PARC linac Shin MICHIZONO KEK, High Energy Accelerator Research Organization (JAPAN)
Measurement opportunities with the LHC transverse damper W. Hofle, D. Valuch.
A new Ad Hoc Positioning System 컴퓨터 공학과 오영준.
Digital Phase Control System for SSRF LINAC C.X. Yin, D.K. Liu, L.Y. Yu SINAP, China
1 Implementation in Hardware of Video Processing Algorithm Performed by: Yony Dekell & Tsion Bublil Supervisor : Mike Sumszyk SPRING 2008 High Speed Digital.
Frank Ludwig, DESY Content : 1 Stability requirements for phase and amplitude for the XFEL 2 Next LLRF system for optimized detector operation 3 Limitations.
George Mason University ECE 448 FPGA and ASIC Design with VHDL FPGA Design Flow ECE 448 Lecture 7.
Digital Phase Control System for SSRF LINAC C.X. Yin, D.K. Liu, L.Y. Yu SINAP, China
1 Simulation for power overhead and cavity field estimation Shin Michizono (KEK) Performance (rf power and max. cavity MV/m 24 cav. operation.
ESS LLRF and Beam Interaction. ESS RF system From the wall plug to the coupler Controlled over EPICS Connected to the global Machine Protection System.
LCLS LLRF System October 10-13, 2005 LLRF05 B. Hong, R. Akre, A. Hill, D. Kotturi, H. Schwarz SLAC, Stanford, Menlo Park, CA 94025, USA Work supported.
Analog/Digital Conversion
Low Power, High-Throughput AD Converters
Numerical signal processing for LVDT reading based on rad tol components Salvatore Danzeca Ph.D. STUDENT (CERN EN/STI/ECE ) Students’ coffee meeting 1/3/2012.
LLRF at FLASH for 9mA Program, ILC08, Nov. 19, 2008 LLRF for the FLASH 9mA Program S. Simrock DESY, Hamburg, Germany.
LLRF_05 - CERN, October 10-13, 2005Institute of Electronic Systems Superconductive cavity driving with FPGA controller Tomasz Czarski Warsaw University.
GDE meeting Beijing (Mar.27, 2010) 1 DRFS LLRF system configuration Shin MICHIZONO KEK LLRF lack layout for DRFS DRFS cavity grouping HLRF requirements.
FLASH RF gun developments. Sven Pfeiffer for the LLRF team FEL Seminar Hamburg,
Possible LLRF Configuration in ILC Sigit Basuki Wibowo LLRF Workshop, Shanghai - Nov 5, 2015.
BE-RF-FB THE LINAC4 LOW LEVEL RF 02/11/2015 LLRF15, THE LINAC4 LOW LEVEL RF2 P. Baudrenghien, J. Galindo, G. Hagmann, J. Noirjean, D. Stellfeld, D.Valuch.
Low Power, High-Throughput AD Converters
SPIE - WARSAW, August 30, 2005Institute of Electronics Systems, ELHEP Group TESLA Cavity driving with FPGA controller Tomasz Czarski WUT - Institute of.
LLRF for PXIE Brian Chase For the Project X LLRF Collaboration 1 PX Collaboration Meeting, April 2012 Berkeley - B. Chase.
CI Lecture Series Summer 2010 An Overview of IQ Modulation and Demodulation Techniques for Cavity LLRF Control.
ESS LLRF and Beam Interaction
Areal RF Station A. Vardanyan
Class Exercise 1B.
LLRF Research and Development at STF-KEK
B.Sc. Thesis by Çağrı Gürleyük
Mixed-Digital/Analog Simulation and Modeling Research
An FPGA Implementation of a Brushless DC Motor Speed Controller
EEE2135 Digital Logic Design Chapter 1. Introduction
Progress on the MICE LLRF System
ILC LLRF Status Ruben Carcagno, Brian Chase
Introduction Introduction to VHDL Entities Signals Data & Scalar Types
Digital Control Systems
FIT Front End Electronics & Readout
FPGA Implementation of Multicore AES 128/192/256
DESIGN AND IMPLEMENTATION OF DIGITAL FILTER
Low Level RF Status Outline LLRF controls system overview
Low Level RF Status Outline LLRF controls system overview
HARDWARE IMPLEMENTATION OF TEA TINY ENCRYPTION ALGORITHM
DIGITAL ON/OFF AM MODULATOR AMIT R SHARMA & AKRAM SHAZAD.
Linac Coherent Light Source (LCLS) LLRF Preliminary Design Review LLRF Monitor and Control System September 26, 2005 Ron Akre.
Presented by Mohsen Shakiba
Low Level RF Status Outline Overview showing hardware instances
Presentation transcript:

Estimation of IQ vector components of RF field - Theory and implementation M. Grecki, T. Jeżyński, A. Brandt

Agenda Introduction - LLRF system Downconversion and IQ estimation VHDL implementation of IQ estimator Sources of incorrectness Simulation and optimization of IQ estimation parameters (IF, SF) Conclusion

Agenda Introduction - LLRF system Downconversion and IQ estimation VHDL implementation of IQ estimator Sources of incorrectness Simulation and optimization of IQ estimation parameters (IF, SF) Conclusion

FPGA FTPZT Klystron ADC DAC Digital feedback ~ ~~ wave guide tuner HV cav.1 RF power waveguide ADC rf switch ~ Ainc Aref timing DOOCS server VME beam IQ wector modulator Control panel FTPZT ADC DAC ~ wave guide tuner cav.n ADC ~ Ainc Aref.... LO - Local Oscillator FPGA computational algorithm [a ij ]  + Feed forward table Gain table Setpoint table [b ij ] [z ij ]... cav A cav B cav Z + LLRF control system

Agenda Introduction - LLRF system Downconversion and IQ estimation VHDL implementation of IQ estimator Sources of incorrectness Simulation and optimization of IQ estimation parameters (IF, SF) Conclusion

Problem: signal downconversion I and Q estimation x if =x rf ·x lo x rf x lo x if  lo  F(  )   rf  rf -  lo  rf +  lo

Sampling of downconverted signal

System migration Future: IF = 81MHz ? SF = 36MHz ? TS = 1us many samples per TS averaging possible (noise reduction) Now: IF = 250kHz SF = 1MHz TS = 1us 4 samples / IF signal period prediction needed

AD Conversion parameters Constant SF (time uniform sampling) M·IF=N·SF (M,N –integer numbers) TS=1  s, IF >= 1MHz SF >= 3MHz, limited by ADC parameters SF - averaging => noise reduction SF - ADC accuracy drops down IF - ADC accuracy drops down

Agenda Introduction - LLRF system Downconversion and IQ estimation VHDL implementation of IQ estimator Sources of incorrectness Simulation and optimization of IQ estimation parameters (IF, SF) Conclusion

IQ estimation IF=81MHz, SF=36MHz entity IQestim is port (I : buffer BREG; -- I output Q : buffer BREG; -- Q output iqr : out bit; -- IQ output ready S : in BREG; -- sample input sr : in bit; -- sample ready input clk : in bit; reset : in bit); end; I reset clk sr iqr Q S

Numerical algorithm sincos xixi  18x18  14b int 24b int >>8 >>5 32b int *int(2 18 /M) >>17 IQ 14b int >>5 *int(2 18 /M) >>17 28b int < x i < < sin, cos < The computation algorithm assures ~14bits accuracy of results

VHDL implementation Design Summary Target Device : x2v4000 Target Package : ff1152 Target Speed : -6 Logic Utilization: Total Number Slice Registers: 64 out of 46,080 1% Number used as Flip Flops: 62 Number used as Latches: 2 Number of 4 input LUTs: 55 out of 46,080 1% Logic Distribution: Number of occupied Slices: 43 out of 23,040 1% Number of Slices containing only related logic: 43 out of % Number of Slices containing unrelated logic: 0 out of 43 0% *See NOTES below for an explanation of the effects of unrelated logic Total Number 4 input LUTs: 80 out of 46,080 1% Number used as logic: 55 Number used as a route-thru: 25 Number of bonded IOBs: 46 out of 824 5% IOB Flip Flops: 29 Number of MULT18X18s: 4 out of 120 3% Number of GCLKs: 2 out of 16 12% Design statistics: Minimum period: ns (Maximum frequency: MHz)

Agenda Introduction - LLRF system Downconversion and IQ estimation VHDL implementation of IQ estimator Sources of incorrectness Simulation and optimization of IQ estimation parameters (IF, SF) Conclusion

Accuracy of ADC - AD6645 (1)

Accuracy of ADC - AD6645 (2)

Frank Ludwig /

Agenda Introduction - LLRF system Downconversion and IQ estimation VHDL implementation of IQ estimator Sources of incorrectness Simulation and optimization of IQ estimation parameters (IF, SF) Conclusion

Results of simulations error error rmserror max

IF=81MHz SF=36MHz Vn=0.5mV jit=5ps IF=81MHz SF=72MHz Vn=0.5mV jit=5ps Aerr(mean,std,min,max)= / / / PHI(mean,std,min,max)= / / / deg. Aerr(mean,std,min,max)= / / / PHI(mean,std,min,max)= / / / deg.

IF=81MHz, Vn=0.5mV, jit=5ps IF=9MHz, Vn=0.5mV, jit=5ps Error vs SF

SF=36MHz, Vn=0.5mV, jit=5ps SF=72MHz, Vn=0.5mV, jit=5ps Error vs IF

S shapeU shape Nonlinearity of ADC Nonlinearity does hardly influence phase

Agenda Introduction - LLRF system Downconversion and IQ estimation VHDL implementation of IQ estimator Source of incorrectness Simulation and optimization of IQ estimation parameters (IF, SF) Conclusion

Algorithm of IQ calculation is straightforward Its implementation in FPGA is simple and uses few resources The results of IQ calculation by Matlab script and VHDL model is identical the IF frequency should be chosen low (e.g. 9MHz) the SF frequency should be chosen high, limited by ADC SNR raise (e.g. 72MHz) all the noise sources and jitters should be identified and their influence on IQ estimation error investigated

Thank you for your attention. Questions?

Some maths.... when we sample x(t) we can say that we measure real part of complex RF vector in rotating coordinate system RF  x from this equations I and Q have to be calculated I Q

Some more maths.... LS where that is constant for given conversion scheme that needs calculation

Some math tricks... that is true if M  =k*360deg