Chapter (3) Transcendental Functions 1- Trigonometric Functions 2- Exponential Functions 3- Hyperbolic Functions
1- Trigonometric Functions
Angles complete revolution contains Example Solution
Domain: R Range: [-1,1] Symmetry : odd function Zeros: Periodic with period= 2π
Domain: R Range: [-1,1] Symmetry: Even function Zeros: Periodic with period = 2π
Domain:Range: R Symmetry : Odd function Zeros: Periodic with period = π
Domain:Range: R Symmetry : Odd function Zeros: Periodic with period = π
Domain: R- zeros of sin x Range: R- (-1,1) Symmetry : odd function No ZerosPeriodic with period= 2π
Domain: R- zeros of cosx Range: R- (-1,1) Symmetry : even function No ZerosPeriodic with period= 2π
Some Trigonometric Identities:
Example Solution
2- Exponential Functions The exponential function is a function of the form a >0, a ≠ 1 In the definition of an exponential function, a, the base, is required to be positive. Domain: Range:
Theorem
Example Solution (i) Evaluate the limit (ii) Sketch the graph of the function
The Natural Exponential Function The value of e accurate to eight places is
Basic Properties of Natural Exponential Function
3- Hyperbolic Functions The hyperbolic functions are some combinations of and arise so frequently in mathematics and its applications.
Basic identities
Example Prove that Solution