CHAPTER 4: Scatterplots and Correlation ESSENTIAL STATISTICS Second Edition David S. Moore, William I. Notz, and Michael A. Fligner Lecture Presentation.

Slides:



Advertisements
Similar presentations
Scatterplots and Correlation
Advertisements

Chapter 3: Describing Relationships
CHAPTER 4: Scatterplots and Correlation. Chapter 4 Concepts 2  Explanatory and Response Variables  Displaying Relationships: Scatterplots  Interpreting.
Section 3.1 Scatterplots. Two-Variable Quantitative Data  Most statistical studies involve more than one variable.  We may believe that some of the.
CHAPTER 4: Scatterplots and Correlation
+ Scatterplots and Correlation Displaying Relationships: ScatterplotsThe most useful graph for displaying the relationship between two quantitative variables.
Chapter 3 Describing Relationships
CHAPTER 3 Describing Relationships
Chapter 3: Describing Relationships
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 3: Describing Relationships Section 3.1 Scatterplots and Correlation.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 3: Describing Relationships Section 3.1 Scatterplots and Correlation.
CHAPTER 4: Scatterplots and Correlation ESSENTIAL STATISTICS Second Edition David S. Moore, William I. Notz, and Michael A. Fligner Lecture Presentation.
Stat 1510: Statistical Thinking and Concepts Scatterplots and Correlation.
Warm-Up A trucking company determines that its fleet of trucks averages a mean of 12.4 miles per gallon with a standard deviation of 1.2 miles per gallon.
Lecture PowerPoint Slides Basic Practice of Statistics 7 th Edition.
CHAPTER 3 Describing Relationships
Section 3.1 Scatterplots & Correlation Mrs. Daniel AP Statistics.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 3 Describing Relationships 3.1 Scatterplots.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 3: Describing Relationships Section 3.1 Scatterplots and Correlation.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 3 Describing Relationships 3.1 Scatterplots.
Lecture PowerPoint Slides Basic Practice of Statistics 7 th Edition.
+ Warm Up Tests 1. + The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 3: Describing Relationships Section 3.1 Scatterplots.
Unit 3: Describing Relationships
4.1 Scatterplots  Explanatory and Response Variables  Scatterplots  Interpreting Scatterplots  Categorical Variables in Scatterplots 1.
Notes Chapter 7 Bivariate Data. Relationships between two (or more) variables. The response variable measures an outcome of a study. The explanatory variable.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 3: Describing Relationships Section 3.1 Scatterplots and Correlation.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 3: Describing Relationships Section 3.1 Scatterplots and Correlation.
Chapter 3: Describing Relationships
CHAPTER 3 Describing Relationships
Chapter 3: Describing Relationships
Chapter 3: Describing Relationships
CHAPTER 3 Describing Relationships
Chapter 3: Describing Relationships
Chapter 3: Describing Relationships
Chapter 3: Describing Relationships
Chapter 3: Describing Relationships
Chapter 3: Describing Relationships
Chapter 3: Describing Relationships
Warmup In a study to determine whether surgery or chemotherapy results in higher survival rates for a certain type of cancer, whether or not the patient.
Chapter 3: Describing Relationships
CHAPTER 3 Describing Relationships
CHAPTER 3 Describing Relationships
Chapter 3 Scatterplots and Correlation.
Chapter 3: Describing Relationships
CHAPTER 3 Describing Relationships
CHAPTER 3 Describing Relationships
Chapter 3: Describing Relationships
Chapter 3: Describing Relationships
September 25, 2013 Chapter 3: Describing Relationships Section 3.1
CHAPTER 3 Describing Relationships
CHAPTER 3 Describing Relationships
Summarizing Bivariate Data
CHAPTER 3 Describing Relationships
CHAPTER 3 Describing Relationships
Chapter 3: Describing Relationships
Chapter 3: Describing Relationships
Chapter 3: Describing Relationships
CHAPTER 3 Describing Relationships
Chapter 3: Describing Relationships
AP Stats Agenda Text book swap 2nd edition to 3rd Frappy – YAY
CHAPTER 3 Describing Relationships
Chapter 3: Describing Relationships
Chapter 3: Describing Relationships
Chapter 3: Describing Relationships
Chapter 3: Describing Relationships
Chapter 3: Describing Relationships
Chapter 3: Describing Relationships
Basic Practice of Statistics - 3rd Edition
CHAPTER 3 Describing Relationships
Chapter 3: Describing Relationships
Presentation transcript:

CHAPTER 4: Scatterplots and Correlation ESSENTIAL STATISTICS Second Edition David S. Moore, William I. Notz, and Michael A. Fligner Lecture Presentation

Chapter 4 Concepts  Explanatory and Response Variables  Displaying Relationships: Scatterplots  Interpreting Scatterplots  Measuring Linear Association: Correlation  Facts About Correlation 2

Chapter 4 Objectives  Define explanatory and response variables  Construct and interpret scatterplots  Calculate and interpret correlation  Describe facts about correlation 3

Response Variable, Explanatory Variable A response variable measures an outcome of a study. An explanatory variable may help explain or influence changes in a response variable. Note: In many studies, the goal is to show that changes in one or more explanatory variables actually cause changes in a response variable. However, other explanatory-response relationships don’t involve direct causation. Most statistical studies examine data on more than one variable. In many of these settings, the two variables play different roles. Explanatory and Response Variables 4

5 Scatterplot The most useful graph for displaying the relationship between two quantitative variables is a scatterplot. A scatterplot shows the relationship between two quantitative variables measured on the same individuals. The values of one variable appear on the horizontal axis, and the values of the other variable appear on the vertical axis. Each individual in the data appears as a point on the graph. A scatterplot shows the relationship between two quantitative variables measured on the same individuals. The values of one variable appear on the horizontal axis, and the values of the other variable appear on the vertical axis. Each individual in the data appears as a point on the graph. 1.Decide which variable should go on each axis. If a distinction exists, plot the explanatory variable on the x-axis and the response variable on the y-axis. 2.Label and scale your axes. 3.Plot individual data values. 1.Decide which variable should go on each axis. If a distinction exists, plot the explanatory variable on the x-axis and the response variable on the y-axis. 2.Label and scale your axes. 3.Plot individual data values. How to Make a Scatterplot 5

6 Example: Make a scatterplot of the relationship between body weight and pack weight for a group of hikers. Body weight (lb) Backpack weight (lb) Scatterplot

7 To interpret a scatterplot, follow the basic strategy of data analysis from Chapters 1 and 2. Look for patterns and important departures from those patterns. As in any graph of data, look for the overall pattern and for striking departures from that pattern. You can describe the overall pattern of a scatterplot by the direction, form, and strength of the relationship. An important kind of departure is an outlier, an individual value that falls outside the overall pattern of the relationship. As in any graph of data, look for the overall pattern and for striking departures from that pattern. You can describe the overall pattern of a scatterplot by the direction, form, and strength of the relationship. An important kind of departure is an outlier, an individual value that falls outside the overall pattern of the relationship. How to Examine a Scatterplot Interpreting Scatterplots

8 Two variables have a positive association when above-average values of one tend to accompany above-average values of the other, and when below-average values also tend to occur together. Two variables have a negative association when above-average values of one tend to accompany below-average values of the other. Two variables have a positive association when above-average values of one tend to accompany above-average values of the other, and when below-average values also tend to occur together. Two variables have a negative association when above-average values of one tend to accompany below-average values of the other. Interpreting Scatterplots

9 Direction Form Strength There is one possible outlier: the hiker with the body weight of 187 pounds seems to be carrying relatively less weight than are the other group members. There is a moderately strong, positive, linear relationship between body weight and pack weight. It appears that lighter hikers are carrying lighter backpacks. Interpreting Scatterplots

10 Measuring Linear Association  A scatterplot displays the strength, direction, and form of the relationship between two quantitative variables. The correlation r measures the strength of the linear relationship between two quantitative variables. r is always a number between -1 and 1. r > 0 indicates a positive association. r < 0 indicates a negative association. Values of r near 0 indicate a very weak linear relationship. The strength of the linear relationship increases as r moves away from 0 toward -1 or 1. The extreme values r = -1 and r = 1 occur only in the case of a perfect linear relationship. The correlation r measures the strength of the linear relationship between two quantitative variables. r is always a number between -1 and 1. r > 0 indicates a positive association. r < 0 indicates a negative association. Values of r near 0 indicate a very weak linear relationship. The strength of the linear relationship increases as r moves away from 0 toward -1 or 1. The extreme values r = -1 and r = 1 occur only in the case of a perfect linear relationship.

11 Facts About Correlation 1. Correlation makes no distinction between explanatory and response variables. 2. r has no units and does not change when we change the units of measurement of x, y, or both. 3. Positive r indicates positive association between the variables, and negative r indicates negative association. 4. The correlation r is always a number between -1 and 1. Cautions: Correlation requires that both variables be quantitative. Correlation does not describe curved relationships between variables, no matter how strong the relationship is. Correlation is not resistant. r is strongly affected by a few outlying observations. Correlation is not a complete summary of two-variable data. Cautions: Correlation requires that both variables be quantitative. Correlation does not describe curved relationships between variables, no matter how strong the relationship is. Correlation is not resistant. r is strongly affected by a few outlying observations. Correlation is not a complete summary of two-variable data.

12 Correlation

13 Correlation Practice For each graph, estimate the correlation r and interpret it in context.

Chapter 4 Objectives Review  Define explanatory and response variables  Construct and interpret scatterplots  Calculate and interpret correlation  Describe facts about correlation 14