Structures of Hydrated Alkali Metal Cations, using Infrared Photodissociation Spectroscopy Haochen Ke, Christian van der Linde, James M. Lisy Department of Chemistry, UIUC ISMS-RG 06
Alkali metals (Li, Na, K, Rb and Cs) are important chemical and biochemical elements. –Na and K are essential elements –Balance of electrolyte and osmotic pressure [1] –Electroneurographic signal transmission [1] –Li and Rb are used in treatment of bipolar disorder and depression [2,3] Introduction 2 [1] Berg, J. M., Tymoczko, J. L., Stryer, L. Biochemistry, Seventh Edition; W. H. Freeman, [2] Baldessarini, R. J., Tondo, L., Davis, P., Pompili, M., Goodwin, F. K., Hennen, J. Bipolar Disord. 2006, 8 (2), 625–639. [3] Torta, R., Ala, G.; Borio, R., Cicolin, A., Costamagna, S., Fiori, L., Ravizza, L. Minerva Psichiatr. 1993, 34 (2), 101–110.
M + (H 2 O) n, (M = Li, Na, K, Rb and Cs) are the ubiquitous and basic form in biochemical systems. –Structures of (H 2 O) n [4] –Structures of H + (H 2 O) n [5] Introduction 3 [4] Bryantsev, V. A.; Diallo, M. S.; Van Duin, A. C. T.; Goddard III, W. A. J. Chem. Theory Comput., 2009, 5 (4), 1016–1026. [5] Jiang, J.; Wang, Y.; Chang, H.; Lin, S. H.; Lee, Y. T.; Niedner-Schatteburg, G.; Chang, H. J. Am. Chem. Soc. 2000, 122, [6] Hribar, B.; Southall, N. T.; Vlachy, V.; Dill, K. A. J. Am. Chem. Soc. 2002, 124, “The name ‘MB’ arises because there are three hydrogen- bonding arms, arranged as in the Mercedes Benz logo” [6]
Introduction M + (H 2 O) n, (M = Li, Na, K, Rb and Cs) are the ubiquitous and basic form in biochemical systems. –What are the structures of M + (H 2 O) n ? –Many calculations [7-9] –Limited experimental data [10,11] 4 …… [7] Glendening, E. D.; Feller, D. J. Phys. Chem. B. 1995, 99, 3060–3067. [8] Park, J.; Kołaski, M.; Lee, H. M.; Kim, K. S. J. Chem. Phys. 2004, 121, 3108–3116. [9] Kołaski, M.; Lee, H. M.; Choi, Y. C.; Kim, K. S.; Tarakeshwar, P.; Miller, D. J.; Lisy, J. M. J. Chem. Phys. 2007, 126, [10] Miller, D. J., Lisy, J. M. J. Am. Chem. Soc. 2008, 130 (46), 15393– [11] Miller, D. J., Lisy, J. M. J. Am. Chem. Soc. 2008, 130 (46), 15381–15392.
Research Methods—Experiment Q2 Detection Chamber Differential Chamber 10 Hz Nd 3+ :YAG (1064 nm) ~500 mJ/pulse Tunable LaserVision OPO/A 1.35~10 µm ~ 5mJ/pulse Triple Quadrupole Mass Spectrometer Tunable Infrared Laser Source Chamber InfraRed PhotoDissociation Spectroscopy (IRPD) hνhν Negligible multiple-photon absorption [12,13] Q1 Q3 5 [12] Ke, H., van der Linde, C., Lisy, J. M. J. Phys. Chem. A. 2014, 118 (8), 1363–1373. [13] Beck, J. P.; Lisy, J. M. J. Chem. Phys. 2011, 135,
Research Methods—Calculation Ab initio calculations –Stable structures and energies –MP2 level –O, H, Ar, Li + and Na +, aug-cc-pVDZ –K +, Rb + and Cs +, Los Alamos double-ζ basis sets (LANL2DZ) –No Basis Set Superposition Error (BSSE) correction Rice-Ramsperger-Kassel-Marcus Evaporative-Ensemble (RRKM-EE) calculations –Unimolecular dissociation rate –Effective cluster temperature (50~150K [12] ) –Kinetic shift effect (negligible for M + (H 2 O) n in this apparatus [13] ) 6 [12] Ke, H., van der Linde, C., Lisy, J. M. J. Phys. Chem. A. 2014, 118 (8), 1363–1373.
53.5 kJ/mol 5.5 kJ/mol Energy Threshold (38.3) (39.5) (40.7) (41.9) (43.1) (44.3) (45.5)Equivalent Photon Energy (kJ/mol) Spectral and Energy Analysis Na + (H 2 O) 5 Ar Frequency (cm -1 ) 7 N5f 17.0 kJ/mol N5c 11.7 kJ/mol N5b 11.8 kJ/mol N5a 4.7 kJ/mol <53.5 kJ/mol suppressed >53.5 kJ/mol survived
Structures of M + (H 2 O) 3 Ar
Structures of M + (H 2 O) 4 Ar C4 9
Structures of M + (H 2 O) 5 Ar C4 5+0 C ?
Summary M + (H 2 O) 3 Ar M + (H 2 O) 4 Ar Li, NaCs K, Rb C4 Li, Na, K, Rb Cs 11
M + (H 2 O) 5 Ar 12 Summary Li, Na 5+0 C4 Rb, Cs 4+1 Li, Na, K, Rb, Cs 5+0 C5 Cs 3+2 ? Li
Future Work Quantitative characterization, charge density vs structure Estimate H 2 O binding energy –M + (H 2 O) n → M + (H 2 O) n-1 + H 2 O [12] Biochemical molecules, i.e. 2-amino-1-phenyl ethanol and ephedrine/pseudoephedrine M + (H 2 O) 1 Ar n rotational structures –Christian van der Linde’s presentation –RJ11, Room 274, Medical Sciences Building, 04:25 PM 13 [12] Ke, H.; van der Linde, C.; Lisy, J. M. J. Phys. Chem. A. 2014, 118 (8), 1363–1373.
Acknowledgement Colleagues –Prof. James M. Lisy and Dr. Christian van der Linde –Prof. Benjamin McCall’s Group National Science Foundation CHE
[1] Berg, J. M.; Tymoczko, J. L.; Stryer, L. Biochemistry, Seventh Edition; W. H. Freeman, [2] Baldessarini, R. J.; Tondo, L.; Davis, P.; Pompili, M.; Goodwin, F. K.; Hennen, J. Bipolar Disord. 2006, 8 (5p2), 625–639. [3] Torta, R.; Ala, G.; Borio, R.; Cicolin, A.; Costamagna, S.; Fiori, L.; Ravizza, L. Minerva Psichiatr. 1993, 34 (2), 101–110. [4] Bryantsev, V. A.; Diallo, M. S.; Van Duin, A. C. T.; Goddard III, W. A. J. Chem. Theory Comput., 2009, 5 (4), 1016–1026. [5] Jiang, J.; Wang, Y.; Chang, H.; Lin, S. H.; Lee, Y. T.; Niedner-Schatteburg, G.; Chang, H. J. Am. Chem. Soc. 2000, 122, [6] Hribar, B.; Southall, N. T.; Vlachy, V.; Dill, K. A. J. Am. Chem. Soc. 2002, 124, [7] Glendening, E. D.; Feller, D. J. Phys. Chem. B. 1995, 99, 3060–3067. [8] Park, J.; Kołaski, M.; Lee, H. M.; Kim, K. S. J. Chem. Phys. 2004, 121, 3108–3116. [9] Kołaski, M.; Lee, H. M.; Choi, Y. C.; Kim, K. S.; Tarakeshwar, P.; Miller, D. J.; Lisy, J. M. J. Chem. Phys. 2007, 126, [10] Miller, D. J.; Lisy, J. M. J. Am. Chem. Soc. 2008, 130 (46), 15393– [11] Miller, D. J.; Lisy, J. M. J. Am. Chem. Soc. 2008, 130 (46), 15381– [12] Ke, H.; van der Linde, C.; Lisy, J. M. J. Phys. Chem. A. 2014, 118 (8), 1363–1373. [13] Beck, J. P.; Lisy, J. M. J. Chem. Phys. 2011, 135, Reference 15