Hierarchical Affinity Propagation Inmar E. Givoni, Clement Chung, Brendan J. Frey.

Slides:



Advertisements
Similar presentations
首 页 首 页 上一页 下一页 本讲内容 投影法概述三视图形成及其投影规律平面立体三视图、尺寸标注 本讲内容 复习: P25~P31 、 P84~P85 作业: P7, P8, P14[2-32(2) A3 (1:1)]
Advertisements

纺纱学. 2 绪 论 基本要求:了解纺纱系统的类别 重点掌握:棉纺系统的工艺流程 3 一、纺纱原理与设备 纺纱:用物理或机械的方法将纺织纤维纺成纱 线的过程。 纺纱原理:初加工、原料的选配、开松除杂、 混和、梳理、精梳、并合、牵伸、加捻、卷绕等。 纺纱方法:传统纺纱方法、新型纺纱方法。 纺纱设备:开清棉联合机、梳棉机、精梳机、
在近年的高考地理试题中,考查地球上 两点间最短航线的方向问题经常出现,由于 很多学生对这类问题没有从本质上搞清楚, 又缺乏空间想象能力,只是机械地背一些结 论,造成解这类题目时经常出错。 地球上两点间的最短航线方向问题.
基本知识和几何要素的投影 模块一: 字体练习 第一章 制图的基本知识与基本技能 题目提示返回.
数据挖掘实验 1 Apriori 算法编程实现. 数据挖掘实验一 (20’) 实验目的:了解关联规则在数据挖掘中的 应用,理解和掌握关联挖掘的经典算法 Apriori 算法的基本原理和执行过程并完成程 序设计。 实验内容:对给定数据集用 Apriori 算法进行 挖掘,找出其中的频繁集并生成关联规则。
细分曲面 傅孝明 SA 目录 细分曲面的基本思想 两个关键问题 一些基本概念 几种简单的细分曲面算法 细分曲面方法分类.
一、拟合优度检验 二、变量的显著性检验 三、参数的置信区间
聚类方法( Clustering ) 周源 什么是聚类 聚类( Clustering )就是将数据分组成为多 个类( Cluster )。在同一个类内对象之间 具有较高的相似度,不同类之间的对象差 别较大。
Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011.
第 4 章 抽象解释 内容概述 以一种独立于编程语言的方式,介绍抽象解释的 一些本质概念 – 将 “ 程序分析对语言语义是正确的 ” 这个概念公式 化 – 用 “ 加宽和收缩技术 ” 来获得最小不动点的较好的 近似,并使所需计算步数得到限制 – 用 “ 伽罗瓦连接和伽罗瓦插入 ” 来把代价较大的属 性空间用代价较小的属性空间来代替.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第六十二讲 ) 离散数学. 最后,我们构造能识别 A 的 Kleene 闭包 A* 的自动机 M A* =(S A* , I , f A* , s A* , F A* ) , 令 S A* 包括所有的 S A 的状态以及一个 附加的状态 s.
1 为了更好的揭示随机现象的规律性并 利用数学工具描述其规律, 有必要引入随 机变量来描述随机试验的不同结果 例 电话总机某段时间内接到的电话次数, 可用一个变量 X 来描述 例 检测一件产品可能出现的两个结果, 也可以用一个变量来描述 第五章 随机变量及其分布函数.
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第二章 数值微分和数值积分.
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 3 章 曲线拟合的最小二乘法 给出一组离散点,确定一个函数逼近原函数,插值是这样 的一种手段。在实际中,数据不可避免的会有误差,插值函 数会将这些误差也包括在内。
例9:例9: 第 n-1 行( -1 )倍加到第 n 行上,第( n-2 ) 行( -1 )倍加到第 n-1 行上,以此类推, 直到第 1 行( -1 )倍加到第 2 行上。
论匀强磁场条件下磁通回 路的取法 物理四班 物理四班 林佳宁 (PB ) 林佳宁 (PB ) 指导老师 : 秦敢 指导老师 : 秦敢.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第三十八讲 ) 离散数学. 第八章 格与布尔代数 §8.1 引 言 在第一章中我们介绍了关于集 合的理论。如果将 ρ ( S )看做 是集合 S 的所有子集组成的集合, 于是, ρ ( S )中两个集合的并 集 A ∪ B ,两个集合的交集.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第四十八讲 ) 离散数学. 例 设 S 是一个非空集合, ρ ( s )是 S 的幂集合。 不难证明 :(ρ(S),∩, ∪,ˉ, ,S) 是一个布尔代数。 其中: A∩B 表示 A , B 的交集; A ∪ B 表示 A ,
第十一章 曲线回归 第一节 曲线的类型与特点 第二节 曲线方程的配置 第三节 多项式回归.
线性代数习题课 吉林大学 术洪亮 第一讲 行 列 式 前面我们已经学习了关 于行列式的概念和一些基本 理论,其主要内容可概括为:
传播学 第四讲 传播过程的基本模式. 课前复习  人类语言的五个特点  人类传播的发展进程  传播媒介的三大类型  传播媒介的发展对社会进化的意义.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第二十五讲 ) 离散数学. 定理 群定义中的条件 ( 1 )和( 2 )可以减弱如下: ( 1 ) ’ G 中有一个元素左壹适合 1 · a=a; ( 2 ) ’ 对于任意 a ,有一个元素左逆 a -1 适 合 a -1 ·
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 3 章 曲线拟合的最小二乘法 给出一组离散点,确定一个函数逼近原函数,插值是这样的一种手段。 在实际中,数据不可避免的会有误差,插值函数会将这些误差也包括在内。
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第三十九讲 ) 离散数学. 例 设 S 是一个集合, ρ ( S )是 S 的幂集合,集合 的交( ∩ ),并(∪)是 ρ ( S )上的两个代数运算, 于是,( ρ ( S ), ∩ ,∪) 是一个格。而由例 知.
1 应用计量分析在公共财政领域的应用黄智聪 厦门大学财政系研究生课程 课程名称:应用计量分析在公共财政领域的 应用 授课老师:黄智聪 授课内容: 时间序列与横断面资料的共用 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge, (2001), Undergraduate.
第二章 贝叶斯决策理论 3学时.
非均相物系的分离 沉降速度 球形颗粒的 :一、自由沉降 二、沉降速度的计算 三、直径计算 1. 试差法 2. 摩擦数群法 四、非球形颗粒的自由沉降 1. 当量直径 de :与颗粒体积相等的圆球直径 V P — 颗粒的实际体积 2. 球形度  s : S—— 与颗粒实际体积相等的球形表面积.
量子化学 第四章 角动量与自旋 (Angular momentum and spin) 4.1 动量算符 4.2 角动量阶梯算符方法
化学系 3 班 何萍 物质的分离原理 世世界上任何物质,其存在形式几乎均以混合 物状态存在。分离过程就是将混合物分成两 种或多种性质不同的纯物质的过程。 分分子蒸馏技术是一种特殊的液-液分离技术。
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 5 章 解线性方程组的直接法 实际中,存在大量的解线性方程组的问题。很多数值方 法到最后也会涉及到线性方程组的求解问题:如样条插值的 M 和.
主讲教师:陈殿友 总课时: 124 第十一讲 极限的运算法则. 第一章 二、 极限的四则运算法则 三、 复合函数的极限运算法则 一 、无穷小运算法则 机动 目录 上页 下页 返回 结束 §5 极限运算法则.
在发明中学习 线性代数 概念的引入 李尚志 中国科学技术大学. 随风潜入夜 : 知识的引入 之一、线性方程组的解法 加减消去法  方程的线性组合  原方程组的解是新方程的解 是否有 “ 增根 ” ?  互为线性组合 : 等价变形  初等变换  高斯消去法.
Chapter 4 OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS 优化.
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 7 章 矩阵的特征值和特征向量 很多工程计算中,会遇到特征值和特征向量的计算,如: 机械、结构或电磁振动中的固有值问题;物理学中的各种临界 值等。这些特征值的计算往往意义重大。
第一节 相图基本知识 1 三元相图的主要特点 (1)是立体图形,主要由曲面构成; (2)可发生四相平衡转变; (3)一、二、三相区为一空间。
9的乘法口诀 1 .把口诀说完全。 二八( ) 四六( ) 五八( ) 六八( ) 三七( ) 三八( ) 六七( ) 五七( ) 五六( ) 十六 四十八 四十二 二十四 二十一 三十五 四十 二十四 三十 2 .口算, 并说出用的是哪句口诀。 8×8= 4×6= 7×5= 6×8= 5×8=
第五节 学习要点 对句子的分析,向来是从句型、句类、句式的角度进行的。 以这三个角度为切入点,我们可以建立句型系统、句类系统和句 式系统。 ★句型系统 —— 按照句子的结构模式划分出来的类型系统。
最 小 公 倍 数最 小 公 倍 数 最 小 公 倍 数最 小 公 倍 数. 例题 顺次写出 4 的几个倍数和 6 的几个倍数,它们 公有的倍数是哪几个?其中最小的是多少? 4 的倍数有 : 4 , 8 , 12 , 16 , 20 , 24 , 28 , 32 , 36 , … 6 的倍数有 :
第 3 章 控制流分析 内容概述 – 定义一个函数式编程语言,变量可以指称函数 – 以 dynamic dispatch problem 为例(作为参数的 函数被调用时,究竟执行的是哪个函数) – 规范该控制流分析问题,定义什么是可接受的控 制流分析 – 定义可接受分析在语义模型上的可靠性 – 讨论分析算法.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第五十三讲 ) 离散数学. 定义 设 G= ( V , T , S , P ) 是一个语法结构,由 G 产生的语言 (或者说 G 的语言)是由初始状态 S 演绎出来的所有终止符的集合, 记为 L ( G ) ={w  T *
§8-3 电 场 强 度 一、电场 近代物理证明:电场是一种物质。它具有能量、 动量、质量。 电荷 电场 电荷 电场对外的表现 : 1) 电场中的电荷要受到电场力的作用 ; 2) 电场力可移动电荷作功.
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 8 章 常微分方程 实际中,很多问题的数学模型都是微分方程。我们 可以研究它们的一些性质。但是,只有极少数特殊的方程 有解析解。对于绝大部分的微分方程是没有解析解的。
第六章 系统发生分析 主讲人:孙 啸 制作人:刘志华 东南大学 吴健雄实验室.
网上预约集港操作指南 一、登录系统 登陆下面图片显示网址:输入堆场用户名、密码和校验码登陆系统.
1-4 节习题课 山东省淄博第一中学 物理组 阚方海. 2 、位移公式: 1 、速度公式: v = v 0 +at 匀变速直线运动规律: 4 、平均速度: 匀变速直线运动 矢量式 要规定正方向 统一单位 五个量知道了三 个量,就能求出 其余两个量 3 、位移与速度关系:
《 UML 分析与设计》 交互概述图 授课人:唐一韬. 知 识 图 谱知 识 图 谱知 识 图 谱知 识 图 谱.
本 的 质 基 性 比 上海市傅雷中学 樊丽华 (1). 分数的基本性质 : 分数的分子和分母同时乘以或 除以相同的数( 0 除外), 分数的大小不变. 填空:
Chapter 8 Algorithms. Understand the concept of an algorithm. Define and use the three constructs for developing algorithms: sequence, decision, and repetition.
1 、如果 x + 5 > 4 ,那么两边都 可得 x >- 1 2 、在- 3y >- 4 的两边都乘以 7 可得 3 、在不等式 — x≤5 的两边都乘以- 1 可得 4 、将- 7x — 6 < 8 移项可得 。 5 、将 5 + a >- 2 a 移项可得 。 6 、将- 8x < 0.
名探柯南在侦查一个特大盗窃集团过程 中,获得藏有宝物的密码箱,密码究竟 是什么呢?请看信息: ABCDEF( 每个字 母表示一个数字 ) A :是所有自然数的因数 B :既有因数 5 ,又是 5 的倍数 C :既是偶数又是质数 D :既是奇数又是合数 EF :是 2 、 3 、 5 的最小公倍数.
§10.2 对偶空间 一、对偶空间与对偶基 二、对偶空间的有关结果 三、例题讲析.
请同学们仔细观察下列两幅图有什么共同特点? 如果两个图形不仅形状相同,而且每组对应点所在的直线 都经过同一点, 那么这样的两个图形叫做位似图形, 这个点叫做位 似中心.
表单自定义 “ 表单自定义 ” 功能是用于制作表单的 工具,用数飞 OA 提供的表单自定义 功能能够快速制作出内容丰富、格 式规范、美观的表单。
7 生产费用在完工产品与在产 品之间分配的核算. 2 第七章 生产费用在完工产品与在产品之 间的分配  知识点 :  理解在产品的概念  掌握生产费用在完工产品与在产品之间的分 配.
OSPF. OSPF 协议概述 链路状态信息 RTA RTC RTD RTB 链路状态数据库 每台路由器会将当前正确的链路状态信息向一定 的范围内的所有主机发送 它支持区域的概念,同一区域内的路由器最终都 可以拥有对此区域相同的拓扑描述 每台路由器接收到此信息之后,根据最短路径算 法计算最优的下一跳.
力的合成 力的合成 一、力的合成 二、力的平行四边形 上一页下一页 目 录 退 出. 一、力的合成 O. O. 1. 合力与分力 我们常常用 一个力来代替几个力。如果这个 力单独作用在物体上的效果与原 来几个力共同作用在物体上的效 果完全一样,那么,这一个力就 叫做那几个力的合力,而那几个 力就是这个力的分力。
1 分组密码 : 分组密码的工作模式 《现代密码学》第 4 章 (3). 2 本节主要内容 1 、分组密码的工作模式 2 、 Block Modes ECB, CBC 3 、 Stream Modes CFB, OFB.
要求: 熟练掌握发动机的基本术语。 结合实物可以说出发动机大致组成。 掌握发动机的基本工作原理。 掌握发动机各系统的作用。
个体 精子 卵细胞 父亲 受精卵 母亲 人类生活史 问题:人类产生配子(精、卵 细胞)是不是有丝分裂?
第五章 特征值与特征向量 —— 幂法 /* Power Method */ 计算矩阵的主特征根及对应的特征向量 Wait a second, what does that dominant eigenvalue mean? That is the eigenvalue with the largest.
八. 真核生物的转录 ㈠ 特点 ① 转录单元为单顺反子( single cistron ),每 个蛋白质基因都有自身的启动子,从而造成在功能 上相关而又独立的基因之间具有更复杂的调控系统。 ② RNA 聚合酶的高度分工,由 3 种不同的酶催化转 录不同的 RNA 。 ③ 需要基本转录因子与转录调控因子的参与,这.
狮 子 分 肉 记 4. 这次的故事从第三天开始 … 第三天,狮子把肉分成 2 块,自己却挑走了 1 块。 然后傲然对其他狼说: “ 你们自己讨论这些肉怎么分! ” 群狼争夺起来,最后一只最强壮的狼打败所有狼, 大摇大摆的开始享用它的战利品。 狼吃饱以后才允许其它狼再来吃,这些狼都成了它的小弟,
人 有 悲 欢 离 合, 月有阴晴圆缺。月有阴晴圆缺。 华师大版七年级数学第二册 海口市第十中学 数学组 吴锐.
欢 迎 使 用 《工程流体力学》 多媒体授课系统 燕 山 大 学 《工程流体力学》课程组. 第九章 缝隙流动 概述 9.1 两固定平板间的层流流动 9.2 具有相对运动的两平行平板 间的缝隙流动 9.3 环形缝隙中的层流流动.
1 第三章 数列 数列的概念 考点 搜索 ●数列的概念 ●数列通项公式的求解方法 ●用函数的观点理解数列 高考 猜想 以递推数列、新情境下的 数列为载体, 重点考查数列的通 项及性质, 是近年来高考的热点, 也是考题难点之所在.
目录 上页 下页 返回 结束 二、无界函数反常积分的审敛法 * 第五节 反常积分 无穷限的反常积分 无界函数的反常积分 一、无穷限反常积分的审敛法 反常积分的审敛法  函数 第五章 第五章.
本章讨论有限自由度结构系统,在给定载荷和初始条件激励下的系统动力响应计算方法。 第 六 章
你知道多细胞动物 和人的生长发育是 从什么细胞开始的 吗 ? 受精卵 分化 肌肉细胞 上皮细胞 人体的各种细胞图.
SCI 数据库检索练习参考 本练习完全依照 SCI 数据库实际检索过程而 实现。 本练习完全依照 SCI 数据库实际检索过程而 实现。 练习中,选择了可以举一反三的题目,读 者可以根据题目进行另外的检索练习,如: 可将 “ 与 ” 运算检索改为 “ 或 ” 、 “ 非 ” 运算检索 等等。 练习中,选择了可以举一反三的题目,读.
§7.2 估计量的评价标准 上一节我们看到,对于总体 X 的同一个 未知参数,由于采用的估计方法不同,可 能会产生多个不同的估计量.这就提出一 个问题,当总体的一个参数存在不同的估 计量时,究竟采用哪一个好呢?或者说怎 样评价一个估计量的统计性能呢?下面给 出几个常用的评价准则. 一.无偏性.
Presentation transcript:

Hierarchical Affinity Propagation Inmar E. Givoni, Clement Chung, Brendan J. Frey

outline A Binary Model for Affinity Propagation Hierarchical Affinity Propagation Experiments

A Binary Model for Affinity Propagation

The Max-Sum Update Rules 变量节点发给函数节点的消息:是变量节点 收到其他与之关联的函数节点发来的消息的 和。 where the notation ne(x)\ f is used to indicate the set of variable node x’s neighbors excluding function node f.

函数节点发给变量节点的消息:是函数节点的 值和其他变量节点发给它的消息累加和的最大 值。 ne( f )\x is used to indicate the set of function node f ’s neighbors excluding variable node x.

A binary variable model for affinity propagation

We derive the scalar message updates in the binary variable AP model. Recall the max-sum message update rules. The scalar message difference βi j (1) − βi j (0) is denoted by βi j. Similar notation is used for α, ρ, and η. In what follows, for each message we calculate its value for each setting of the binary variable and then take the difference.

The αi j messages are identical to the AP availability messages a(i, j),and the ρi j messages are identical to the AP responsibility messages r (i, j).Thus, we have recovered the original affinity propagation updates.

Hierarchical Affinity Propagation Goal: to solve the hierarchical clustering problem. What’s hierarchical clustering ? 层次聚类算法与之前所讲的聚类有很大不同,它 不再产生单一聚类,而是产生一个聚类层次。说 白了就是一棵层次树。 层次聚类算法可分为凝聚( agglomerative ,自底向 上)和分裂( divisive ,自顶向下)两种。自底向 上,一开始,每个数据点各自为一个类别,然后 每一次迭代选取距离最近的两个类别,把他们合 并,直到最后只剩下一个类别为止,至此一棵树 构造完成。自顶向下与之相反过程。

Model Goal: We propose a hierarchical exemplar based clustering objective function in terms of a high-order factor-graph, and we derive an efficient approximate loopy max-sum algorithms. We wish to find a set of L consecutive layers of clustering, where the points to be clustered in layer l are constrained to be in the exemplar set of layer l-1.

(a) HAP factor-graph, a single layer of the standard AP model is shown in the dotted square. (b) HAP messages.

Differences 1.The main difference compared to the at representation is manifested in the functions: if point i is not chosen as an exemplar at layer l-1, (i.e. if = 0), then point i will not be clustered at layer l. Alternatively, if point i is chosen as an exemplar at layer l- 1, it must choose an exemplar at layer l.

2 We note the 1ij messages passed in the first layer and the Lij messages passed in the top-most layer are identical to the standard AP messages for an AP layer.

Experiments 2D synthetic data Analysis of Synthetic HIV Sequences

Figure : 2D synthetic data: comparison of objective Eq. (8) achieved by HAP and its greedy counterpart (Greedy). Top:Median percent improvement of HAP over Greedy for a given number of layers used. Bottom: Scatter plots of the net similarity achieved by HAP v.s. Greedy. Experiments for which HAP obtains better results than Greedy are below the line. Total percent of settings where HAP outperforms Greedy is reported in the inset. Color in scatter-plot indicates the number of layers.

First, we plotted precision v.s. recall for various clustering settings Synthetic HIV data: precision-recall for HAP, Greedy, HKMC and HKMeans applied to the problem of identifying ancestral sequences from a set of 867 synthetic HIV sequences. For HKMC and HKMeans, we only plot the best precision obtained for each unique recall value.

Synthetic HIV data: distribution of Rand index for different experiments using HAP and Greedy. A higher Rand index indicates the solution better resembles the ground truth. Experiments for which HAP obtains better results than Greedy are below the line. The percentage of solutions that identified the correct single ancestor sequence at the top layer (layer 4) is also reported.