Objective The student will be able to: solve systems of equations using substitution. SOL: A.9.

Slides:



Advertisements
Similar presentations
The student will be able to:
Advertisements

y=3x Find y if x=3 2. Find y if x= -2
Solve by graphing: y = -7x + 2 x + 4y = 8 (0,2). Objective: To use the substitution method to solve systems of linear equations.
4.3 Systems of Equations - Elimination Objective: The student will be able to: Solve systems of equations using elimination with addition and subtraction.
Elimination Using Addition and Subtraction. Solving Systems of Equations So far, we have solved systems using graphing and substitution. Solve the system.
The student will be able to:
Objective The student will be able to: solve systems of equations using substitution. December 3, 2014.
Objective The student will be able to: solve systems of equations using elimination with addition and subtraction. SOL: A.9 Designed by Skip Tyler, Varina.
1.2 Solving Linear Systems by Substitution 9/19/12.
Substitution Method: 1. Solve the following system of equations by substitution. Step 1 is already completed. Step 2:Substitute x+3 into 2 nd equation.
Objective The student will be able to: solve systems of equations using substitution (including special cases in which lines are parallel or coinciding)
5.2: Solving Systems of Equations using Substitution
 What is the slope of the line that passes through the following points. 1.(-2, 5) (1, 4)  Identify the slope and y -intercept of each equation. 2.y.
Objective The student will be able to: solve systems of equations using elimination with addition and subtraction. SOL: A.4e Designed by Skip Tyler, Varina.
Solving Systems of Equations By Substitution – Easier
Solving Systems of Equations By Elimination. Warm – up!! *As you walk in, please pick up your calculator!!* Use substitution to solve the following systems.
Solving Linear Systems of Equations by Substitution Section 3.2, Part I.
Solving Systems of Equations So far, we have solved systems using graphing and substitution. These notes show how to solve the system algebraically using.
Solve Systems of Equations Using Elimination Section 6.3.
Objective The student will be able to: solve systems of equations using elimination with addition and subtraction.
Warm-Up 1. What is a system of equation? 2. So far, we have solved systems of equations using 2 methods. What are they? 3. Why is graphing not always a.
7.2 Solving Systems Using Substitution. 7.2 – Solving Syst. By Subst. Goal / “I can…” Solve systems using substitution.
Solving Systems of Equation Using Subsitution Lesson 6-2 Oct. 24, 2014.
Algebra 1 Review Systems of Linear Equations Using Substitution
Objective I can solve systems of equations using elimination with addition and subtraction.
The student will be able to:
Solving Systems of Equations
Warm Up x = y – 3 9 – 3x 12 9 Simplify each expression.
The student will be able to:
Solving Systems of Equations with Substitution
The student will be able to:
Math 1201-Unit:7 Systems of Linear equations
The student will be able to:
The student will be able to:
The student will be able to:
The student will be able to:
The student will be able to:
SYSTMES OF EQUATIONS SUBSTITUTION.
The student will be able to:
The student will be able to:
The student will be able to:
The student will be able to:
3.2a – Solving Systems algebraically
The student will be able to:
The student will be able to:
The student will be able to:
The student will be able to:
The student will be able to:
Maintenance Sheet 18 Due Tomorrow
The student will be able to:
The student will be able to:
Solving Systems of Equations
Question How do you solve a system of simultaneous equations by substitution?
Objectives Identify solutions of linear equations in two variables.
The student will be able to:
The student will be able to:
Systems of Equations.
Solving Systems of Equations
Warm-Up Solve the system by graphing..
The student will be able to:
The student will be able to:
Solving Systems of Equations
The student will be able to:
Solving Systems by Substitution
The student will be able to:
The student will be able to:
The student will be able to:
The student will be able to:
The student will be able to:
The student will be able to:
Presentation transcript:

Objective The student will be able to: solve systems of equations using substitution. SOL: A.9

Solving Systems of Equations You can solve a system of equations using different methods. The idea is to determine which method is easiest for that particular problem. These notes show how to solve the system algebraically using SUBSTITUTION.

Solving a system of equations by substitution Step 1: Solve an equation for one variable. Step 2: Substitute Step 3: Solve the equation. Step 4: Plug back in to find the other variable. Step 5: Check your solution. Pick the easier equation. The goal is to get y= ; x= ; a= ; etc. Put the equation solved in Step 1 into the other equation. Get the variable by itself. Substitute the value of the variable into the equation. Substitute your ordered pair into BOTH equations.

1) Solve the system using substitution x + y = 5 y = 3 + x Step 1: Solve an equation for one variable. Step 2: Substitute The second equation is already solved for y! x + y = 5 x + (3 + x) = 5 Step 3: Solve the equation. 2x + 3 = 5 2x = 2 x = 1

1) Solve the system using substitution x + y = 5 y = 3 + x Step 4: Plug back in to find the other variable. x + y = 5 (1) + y = 5 y = 4 Step 5: Check your solution. (1, 4) (1) + (4) = 5 (4) = 3 + (1) The solution is (1, 4). What do you think the answer would be if you graphed the two equations?

Which answer checks correctly? 3x – y = 4 x = 4y (2, 2) 2. (5, 3) 3. (3, 5) 4. (3, -5)

3) Solve the system using substitution x = 3 – y x + y = 7 Step 1: Solve an equation for one variable. Step 2: Substitute The first equation is already solved for x! x + y = 7 (3 – y) + y = 7 Step 3: Solve the equation. 3 = 7 The variables were eliminated!! This is a special case. Does 3 = 7? FALSE! When the result is FALSE, the answer is NO SOLUTIONS.

What does it mean if the result is “TRUE”? 1. The lines intersect 2. The lines are parallel 3. The lines are coinciding 4. The lines reciprocate 5. I can spell my name