MEASUREMENT OF BRANY BLACK HOLE PARAMETERS IN THE FRAMEWORK OF THE ORBITAL RESONANCE MODEL OF QPOs MEASUREMENT OF BRANY BLACK HOLE PARAMETERS IN THE FRAMEWORK.

Slides:



Advertisements
Similar presentations
Estimating the Spin of Stellar-Mass Black Holes Jeffrey McClintock Harvard-Smithsonian CfA STScI Black Hole Symposium April 25, 2007.
Advertisements

PSEUDO-NEWTONIAN TOROIDAL STRUCTURES IN SCHWARZSCHILD-DE SITTER SPACETIMES Jiří Kovář Zdeněk Stuchlík & Petr Slaný Institute of Physics Silesian University.
Gabriel Török 3:2 ratio in NS X-ray observations: summary of recent progress The presentation draws mainly from the collaboration with M.A. Abramowicz,
Accretion in Binaries Two paths for accretion –Roche-lobe overflow –Wind-fed accretion Classes of X-ray binaries –Low-mass (BH and NS) –High-mass (BH and.
Neutron Stars and Black Holes
Ron Remillard, MIT Primary Collaborator, Jeff McClintock CfA
How X-ray Experiments See Black Holes: Past, Present and Future Lynn Cominsky Sonoma State University.
Pavel Bakala Eva Šrámková, Gabriel Török and Zdeněk Stuchlík Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo.
Horizon and exotics. 2 Main reviews and articles gr-qc/ Black Holes in Astrophysics astro-ph/ No observational proof of the black-hole event-horizon.
Gabriel Török* 3:2 controversy …hope for underlying QPO physics ? *Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava,
1 Astrophysical black holes Chris Reynolds Department of Astronomy.
Vznik této prezentace byl podpořen projektem CZ.1.07/2.3.00/ Tato prezentace slouží jako vzdělávací materiál.
Neutron Stars and Black Holes Chapter 14. Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun ) collapse beyond.
Institute of Physics, Silesian University in Opava Gabriel Török GAČR 209/12/P740, CZ.1.07/2.3.00/ Synergy, GAČR G, SGS ,
Quadrupole moments of neutron stars and strange stars Martin Urbanec, John C. Miller, Zdenek Stuchlík Institute of Physics, Silesian University in Opava,
A toy model for HFQPOs in XRBs Ye Yong-Chun ( 叶永春 ), Wang Ding-Xiong( 汪定雄 ) Department of Physics, Huazhong University of Science and Technology, Wuhan,
In collaboration: D. Barret (CESR), M. Bursa & J. Horák (CAS), W. Kluzniak (CAMK), J. Miller (SISSA). We acknowledge the support of Czech grants MSM ,
Gabriel Török* Relating high-frequency QPOs and neutron-star EOS *Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava,
Vznik této prezentace byl podpořen projektem CZ.1.07/2.3.00/ Tato prezentace slouží jako vzdělávací materiál.
Measuring the black hole spin of GX 339-4: A systematic look at its very high and low/hard state. Rubens Reis Institute of Astronomy - Cambridge In collaboration.
Black Holes Escape velocity Event horizon Black hole parameters Falling into a black hole.
International Workshop on Astronomical X-Ray Optics Fingerprints of Superspinars in Astrophysical Phenomena Zdeněk Stuchlík and Jan Schee Institute of.
On some prospects of the LOFT mission Institute of Physics, Silesian University in Opava Astronomical Institute, Prague Gabriel Török, Pavel Bakala, Vladimír.
Timing and Spectral Properties of Neutron Star Low-Mass X-ray Binaries Sudip Bhattacharyya Department of Astronomy and Astrophysics Tata Institute of Fundamental.
Pavel Bakala Martin Blaschke, Martin Urbanec, Gabriel Török and Eva Šrámková Institute of Physics, Faculty of Philosophy and Science, Silesian University.
THIN ACCRETION DISCS AROUND NEUTRON AND QUARK STARS T. Harko K. S. Cheng Z. Kovacs DEPARTMENT OF PHYSICS, THE UNIVERSITY OF HONG KONG, POK FU LAM ROAD,
Some Comments on Results Achieved within the Students Project SGS 01/2010 and CZ.1.07/2.2.00/ (Bachelors and Masters Theses 2011) Institute of Physics,
KERR SUPERSPINARS AS AN ALTERNATIVE TO BLACK HOLES Zdeněk Stuchlík Institute of Physics, Faculty of Philosophy and Science, Silesian university in Opava.
Ramesh Narayan (McClintock, Shafee, Remillard, Davis, Li)
MEASURING SPIN PARAMETERS OF STELLAR-MASS BLACK HOLES Ramesh Narayan.
On Some Prospects of the LOFT Mission: QPO Models Institute of Physics, Silesian University in Opava Gabriel Török CZ.1.07/2.3.00/ Synergy, GAČR.
Death of Stars III Physics 113 Goderya Chapter(s): 14 Learning Outcomes:
Analysis of half-spin particle motion in static Reissner-Nordström and Schwarzschild fields М.V.Gorbatenko, V.P.Neznamov, Е.Yu.Popov (DSPIN 2015), Dubna,
Observing Orbital Motion in Strongly Curved Spacetime Institute of Physics, Silesian University in Opava Gabriel Török CZ.1.07/2.3.00/ Synergy,
Pavel Bakala Martin, Urbanec, Eva Šrámková, Gabriel Török and Zdeněk Stuchlík Institute of Physics, Faculty of Philosophy and Science, Silesian University.
Pavel Bakala Eva Šrámková, Gabriel Török and Zdeněk Stuchlík Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo.
Equilibrium configurations of perfect fluid in Reissner-Nordström de Sitter spacetimes Hana Kučáková, Zdeněk Stuchlík, Petr Slaný Institute of Physics,
Equilibrium configurations of perfect fluid in Reissner-Nordström-anti-de Sitter spacetimes Hana Kučáková, Zdeněk Stuchlík, Petr Slaný Institute of Physics,
Equilibrium configurations of perfect fluid in Reissner-Nordström-(anti-)de Sitter spacetimes Hana Kučáková, Zdeněk Stuchlík & Petr Slaný MG12 Paris,
Zdeněk Stuchlík Gabriel Török, Petr Slaný, Andrea Kotrlová, Jiří Kovář Multi-resonant models of quasi-periodic oscillations in black hole and neutron star.
A Virtual Trip to the Black Hole Computer Simulation of Strong Gravitional Lensing in Schwarzschild-de Sitter Spacetimes Pavel Bakala Petr Čermák, Kamila.
Pavel Bakala Gabriel Török, Zdeněk Stuchlík, Eva Šrámková Institute of Physics Faculty of Philosophy and Science Silesian University in Opava Czech Republic.
Black Holes in General Relativity and Astrophysics Theoretical Physics Colloquium on Cosmology 2008/2009 Michiel Bouwhuis.
A Virtual Trip to the Black Hole Computer Simulation of Strong Gravitional Lensing in Schwarzschild-de Sitter Spacetimes Pavel Bakala Petr Čermák, Stanislav.
Pavel Bakala,Gabriel Török, Zdeněk Stuchlík and Eva Šrámková Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo.
Black holes and accretion flows Chris Done University of Durham.
Gabriel Török, P.Bakala, E. Šrámková, Z. Stuchlík, M. Urbanec Mass and spin of NS implied by models of kHz QPOs *Institute of Physics, Faculty of Philosophy.
Figs on this page: nasa.gov. Outline 1. Introduction: Quasi-periodic oscillations (QPOs) - Black-hole and neutron star binaries, accretion disks and QPOs.
Gabriel Török* On orbital models of kHz QPOs in neutron star binaries *Institute of Physics, Faculty of Philosophy and Science, Silesian University in.
Paczyński Modulation: Diagnostics of the Neutron Star EOS? Institute of Physics, Silesian University in Opava Gabriel Török, Martin Urbanec, Karel Adámek,
INFLUENCE OF COSMOLOGICAL CONSTANT ON PARTICLE DYNAMICS NEAR COMPACT OBJECTS Zdeněk Stuchlík, Petr Slaný, Jiří Kovář and Stanislav Hledík Institute of.
Jiří Kovář, Petr Slaný, Vladimír Karas, Zdeněk Stuchlík Claudio Cremaschini and John Miller Claudio Cremaschini and John Miller Institute of Physics Silesian.
Measuring the SPIN of Black Holes
A Virtual Trip to the Black Hole Computer Simulation of Strong Lensing near Compact Objects RAGTIME 2005 Pavel Bakala Petr Čermák, Kamila Truparová, Stanislav.
Gabriel Török* On orbital models of kHz QPOs *Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo nám. 13,
Institute of Physics, Silesian University in Opava Gabriel Török GAČR 209/12/P740, CZ.1.07/2.3.00/ Synergy, GAČR G, SGS ,
Announcements Grades for third exam are now available on WebCT Observing this week and next week counts on the third exam. Please print out the observing.
Gabriel Török* 3:2 controversy …hope for underlying QPO physics ? *Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava,
Jiří Kovář, Ondřej Kopáček, Vladimír Karas, Zdeněk Stuchlík Jiří Kovář, Ondřej Kopáček, Vladimír Karas, Zdeněk Stuchlík Institute of Physics Silesian University.
STRONG RESONANT PHENOMENA IN BLACK HOLE SYSTEMS Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo nám. 13,
ON EXISTENCE OF HALO ORBITS IN COMPACT OBJECTS SPACETIMES Jiří Kovář Zdeněk Stuchlík & Vladimír Karas Institute of Physics Silesian University in Opava.
A Dynamic Model of Magnetic Coupling of a Black Hole with its surrounding Accretion Disk Huazhong University of Science & Technology ( , Beijing)
Measuring the Spins of Stellar-Mass Black Holes by Fitting the X-ray Continuum Spectrum Jeff McClintock Credit: A. Broderick & E. Mer Probing Strong Gravity.
Genetic Selection of Neutron Star Structure Matching the X-Ray Observations Speaker: Petr Cermak The Institute of Computer Science Silesian University.
kHz QPOs of LMXBs Constrains on Pulsar Parameters Chengmin Zhang & Hongxing Yin National Astronomical Observatories, Beijing.
Innermost stable circular orbits around squashed Kaluza-Klein black holes Ken Matsuno & Hideki Ishihara ( Osaka City University ) 1.
Lecture 16 Measurement of masses of SMBHs: Sphere of influence of a SMBH Gas and stellar dynamics, maser disks Stellar proper motions Mass vs velocity.
Zdeněk Stuchlík, Gabriel Török, Petr Slaný Multi-resonant models of quasi-periodic oscillations Institute of Physics, Faculty of Philosophy and Science,
黑洞X射线双星的高频准周期振荡(HFQPO)与喷流(Jet)的 相关性
General Relativity in X-ray Astronomy Astrosat and Future Experiments
Presentation transcript:

MEASUREMENT OF BRANY BLACK HOLE PARAMETERS IN THE FRAMEWORK OF THE ORBITAL RESONANCE MODEL OF QPOs MEASUREMENT OF BRANY BLACK HOLE PARAMETERS IN THE FRAMEWORK OF THE ORBITAL RESONANCE MODEL OF QPOs Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo nám. 13, CZ Opava, CZECH REPUBLIC supported by Czech grant MSM Presentation download: in section news Zdeněk Stuchlík and Andrea Kotrlová

Outline 1. Braneworld, black holes & the 5th dimension 1.1. Rotating braneworld black holes 2. Quasiperiodic oscillations (QPOs) 2.1. Black hole high-frequency QPOs in X-ray 2.2. Orbital motion in a strong gravity 2.3. Keplerian and epicyclic frequencies 2.4. Digest of orbital resonance models 2.5. Resonance conditions 2.6. Strong resonant phenomena - "magic" spin 3. Applications to microquasars 3.1. Microquasars data: 3:2 ratio 3.2. Results for GRO J Results for GRS Conclusions 4. References

1. 1.Braneworld, black holes & the 5 th dimension Braneworld model - Randall & Sundrum (1999): - our observable universe is a slice, a "3-brane" in 5-dimensional bulk spacetime

1.1. Rotating braneworld black holes The metric form on the 3-brane – –assuming a Kerr-Schild ansatz for the metric on the brane the solution in the standard Boyer-Lindquist coordinates takes the form Aliev & Gümrükçüoglu (2005): – –exact stationary and axisymmetric solutions describing rotating BH localized on a 3-brane in the Randall-Sundrum braneworld where

1.1. Rotating braneworld black holes The metric form on the 3-brane – –assuming a Kerr-Schild ansatz for the metric on the brane the solution in the standard Boyer-Lindquist coordinates takes the form Aliev & Gümrükçüoglu (2005): – –exact stationary and axisymmetric solutions describing rotating BH localized on a 3-brane in the Randall-Sundrum braneworld where – –looks exactly like the Kerr-Newman solution in general relativity, in which the square of the electric charge Q 2 is replaced by a tidal charge parameter .

1.1. Rotating braneworld black holes The tidal charge  – –means an imprint of nonlocal gravitational effects from the bulk space, – –may take on both positive and negative values ! The event horizon: – –the horizon structure depends on the sign of the tidal charge condition: for for extreme horizon and

1.1. Rotating braneworld black holes The tidal charge  – –means an imprint of nonlocal gravitational effects from the bulk space, – –may take on both positive and negative values ! The event horizon: – –the horizon structure depends on the sign of the tidal charge condition: for for extreme horizon and

1.1. Rotating braneworld black holes The tidal charge  – –means an imprint of nonlocal gravitational effects from the bulk space, – –may take on both positive and negative values ! The event horizon: – –the horizon structure depends on the sign of the tidal charge condition: for This is not allowed in the framework ! of general relativity ! for extreme horizon and

1.1. Rotating braneworld black holes The tidal charge  – –means an imprint of nonlocal gravitational effects from the bulk space, – –may take on both positive and negative values ! The effects of negative tidal charge  – –tend to increase the horizon radius r h, the radii of the limiting photon orbit (r ph ), the innermost bound (r mb ) and the innermost stable circular orbits (r ms ) for both direct and retrograde motions of the particles, – –mechanism for spinning up the black hole so that its rotation parameter exceeds its mass. Such a mechanism is impossible in general relativity ! The event horizon: – –the horizon structure depends on the sign of the tidal charge condition: for This is not allowed in the framework ! of general relativity ! for extreme horizon and

2. Quasiperiodic oscillations (QPOs) Fig. on this page: nasa.gov Black hole hi-frequency QPOs in X-ray

hi-frequency QPOs low-frequency QPOs (McClintock & Remillard 2003) 2.1. Quasiperiodic oscillations

(McClintock & Remillard 2003)

2.2. Orbital motion in a strong gravity – –the Keplerian orbital frequency – –and the related epicyclic frequencies (radial, vertical ): ν ~ 1/M Rotating braneworld BH with mass M, dimensionless spin a, and the tidal charge : the formulae for has a local maximum for all values of spin a - only for rapidly rotating BHs x ms – radius of the marginally stable orbit Stable circular geodesics exist for

2.3. Keplerian and epicyclic frequencies

! - can have a maximum at x = x ex ! Notice, that reality condition must be satisfied 2.3. Keplerian and epicyclic frequencies

Can it be located above the outher BH horizon x h the marginally stable orbit x ms ? ! - can have a maximum at x = x ex ! Notice, that reality condition must be satisfied 2.3. Keplerian and epicyclic frequencies

Can it be located above the outher BH horizon x h the marginally stable orbit x ms ? ! - can have a maximum at x = x ex ! Extreme BHs: Notice, that reality condition must be satisfied 2.3. Keplerian and epicyclic frequencies

2.4. Digest of orbital resonance models

2.5. Resonance conditions – –determine implicitly the resonant radius – –must be related to the radius of the innermost stable circular geodesic

2.5. Resonance conditions

2.6. Strong resonant phenomena - "magic" spin

3. Applications to microquasars GRO J

3. Applications to microquasars GRS

3.1. Microquasars data: 3:2 ratio Török, Abramowicz, Kluzniak, Stuchlík 2005

3.1. Microquasars data: 3:2 ratio Török, Abramowicz, Kluzniak, Stuchlík 2005

3.1. Microquasars data: 3:2 ratio Using known frequencies of the twin peak QPOs and the known mass M of the central BH, the dimensionless spin a and the tidal charge  can be related assuming a concrete version of the resonance model.

3.1. Microquasars data: 3:2 ratio Using known frequencies of the twin peak QPOs and the known mass M of the central BH, the dimensionless spin a and the tidal charge  can be related assuming a concrete version of the resonance model.

3.1. Microquasars data: 3:2 ratio Using known frequencies of the twin peak QPOs and the known mass M of the central BH, the dimensionless spin a and the tidal charge  can be related assuming a concrete version of the resonance model.

3.1. Microquasars data: 3:2 ratio Using known frequencies of the twin peak QPOs and the known mass M of the central BH, the dimensionless spin a and the tidal charge  can be related assuming a concrete version of the resonance model.

3.1. Microquasars data: 3:2 ratio Using known frequencies of the twin peak QPOs and the known mass M of the central BH, the dimensionless spin a and the tidal charge  can be related assuming a concrete version of the resonance model. The most recent angular momentum estimates from fits of spectral continua: GRO J : a ~ ( ) GRS : a > 0.98 a ~ Shafee et al McClintock et al Middleton et al. 2006

3.2. Results for GRO J

Shafee et al McClintock & Remillard 2004 Possible combinations of mass and spin predicted by individual resonance models for the high- frequency QPOs. Shaded regions indicate the likely ranges for the mass (inferred from optical measurements of radial curves) and the dimensionless spin (inferred from the X-ray spectral data fitting) of GRO J

3.2. Results for GRO J Possible combinations of mass and spin predicted by individual resonance models for the high- frequency QPOs. Shaded regions indicate the likely ranges for the mass (inferred from optical measurements of radial curves) and the dimensionless spin (inferred from the X-ray spectral data fitting) of GRO J Shafee et al McClintock & Remillard 2004

3.2. Results for GRO J The only model which matches the observational constraints is the vertical-precession resonance (Bursa 2005) Possible combinations of mass and spin predicted by individual resonance models for the high- frequency QPOs. Shaded regions indicate the likely ranges for the mass (inferred from optical measurements of radial curves) and the dimensionless spin (inferred from the X-ray spectral data fitting) of GRO J Shafee et al McClintock & Remillard 2004

3.2. Results for GRO J

3.3. Results for GRS

McClintock & Remillard 2004

3.3. Results for GRS estimate Middleton et al McClintock & Remillard 2004

3.3. Results for GRS estimate 1 estimate McClintock et al Middleton et al McClintock & Remillard 2004

3.3. Results for GRS

3.4. Conclusions

β = 0

3.4. Conclusions -1 < β < 0.51 (β max for a = 0.7)

3.4. Conclusions -1 < β < 0.51

3.4. Conclusions -1 < β < 0.51

3.4. Conclusions -1 < β < 0.51

3.4. Conclusions -1 < β < 0.51

3.4. Conclusions -1 < β < 0.51

3.4. Conclusions  there is no specific type of resonance model that could work for both sources simultaneously -1 < β < 0.51

THANK YOU FOR YOUR ATTENTION 4. References Abramowicz, M. A. & Kluzniak, W. 2004, in X-ray Timing 2003: Rossi and Beyond., ed. P. Karet, F. K. Lamb, & J. H. Swank, Vol. 714 (Melville: NY: American Institute of Physics), Abramowicz, M. A., Kluzniak, W., McClintock, J. E., & Remillard, R. A. 2004, Astrophys. J. Lett., 609, L63 Abramowicz, M. A., Kluzniak, W., Stuchlík, Z., & Török, G. 2004, in Proceedings of RAGtime 4/5: Workshops on black holes and neutron stars, Opava, 14-16/13-15 October 2002/2003, ed. S. Hledík & Z. Stuchlík (Opava: Silesian University in Opava), 1-23 Aliev, A. N., & Gümrükçüoglu, A. E. 2005, Phys. Rev. D 71, Aliev, A. N., & Galtsov, D. V. 1981, General Relativity and Gravitation, 13, 899 Bursa, M. 2005, in Proceedings of RAGtime 6/7: Workshops on black holes and neutron stars, Opava, 16-18/18-20 September 2004/2005, ed. S. Hledík & Z. Stuchlík (Opava: Silesian University in Opava), McClintock, J. E. & Remillard, R. A. 2004, in Compact Stellar X-Ray Sources, ed. W. H. G. Lewin & M. van der Klis (Cambridge: Cambridge University Press) McClintock, J. E., Shafee, R., Narayan, R., et al. 2006, Astrophys. J., 652, 518 Middleton, M., Done, C., Gierlinski, M., & Davis, S. W. 2006, Monthly Notices Roy. Astronom. Soc., 373, 1004 Randall, L., & Sundrum, R. 1999, Phys. Rev. Lett. 83, 4690 Shafee, R., McClintock, J. E., Narayan, R., et al. 2006, Astrophys. J., 636, L113 Stuchlík, Z. & Török, G. 2005, in Proceedings of RAGtime 6/7: Workshops on black holes and neutron stars, Opava, 16-18/18-20 September 2004/2005, ed. S. Hledík & Z. Stuchlík (Opava: Silesian University in Opava), Stuchlík, Z., Kotrlová, A., & Török, G. 2007: Black holes admitting strong resonant phenomena, submitted Stuchlík, Z., Kotrlová, A., & Török, G. 2007: Multi-resonance model of QPOs: possible high precision determination of black hole spin, in prep. Török, G., Abramowicz, M. A., Kluzniak,W. & Stuchlík, Z. 2005, Astronomy and Astrophysics, 436, 1 Török, G. 2005, Astronom. Nachr., 326, 856