Chapter 5: Constraint Satisfaction ICS 171 Fall 2006.

Slides:



Advertisements
Similar presentations
Constraint Satisfaction Problems
Advertisements

Constraint Satisfaction Problems Russell and Norvig: Chapter
Constraint Satisfaction Problems (Chapter 6). What is search for? Assumptions: single agent, deterministic, fully observable, discrete environment Search.
Constraint Satisfaction Problems
Lecture 11 Last Time: Local Search, Constraint Satisfaction Problems Today: More on CSPs.
1 Constraint Satisfaction Problems A Quick Overview (based on AIMA book slides)
ICS-271:Notes 5: 1 Lecture 5: Constraint Satisfaction Problems ICS 271 Fall 2008.
Artificial Intelligence Constraint satisfaction problems Fall 2008 professor: Luigi Ceccaroni.
Review: Constraint Satisfaction Problems How is a CSP defined? How do we solve CSPs?
Constraint Satisfaction Problems. Constraint satisfaction problems (CSPs) Standard search problem: – State is a “black box” – any data structure that.
Constraint Satisfaction Problems
4 Feb 2004CS Constraint Satisfaction1 Constraint Satisfaction Problems Chapter 5 Section 1 – 3.
1 Constraint Satisfaction Problems Soup Total Cost < $30 Chicken Dish Vegetable RiceSeafood Pork Dish Appetizer Must be Hot&Sour No Peanuts No Peanuts.
Constraint Satisfaction Problems
Constraint Satisfaction
University College Cork (Ireland) Department of Civil and Environmental Engineering Course: Engineering Artificial Intelligence Dr. Radu Marinescu Lecture.
Chapter 5 Outline Formal definition of CSP CSP Examples
Constraint Satisfaction Problems
Constraint Satisfaction Problems
Constraint Satisfaction Problems
ISC 4322/6300 – GAM 4322 Artificial Intelligence Lecture 4 Constraint Satisfaction Problems Instructor: Alireza Tavakkoli September 17, 2009 University.
Variables “To be is to be the value of a variable.” - William Quine.
1 Constraint Satisfaction Problems Slides by Prof WELLING.
CSPs Tamara Berg CS 560 Artificial Intelligence Many slides throughout the course adapted from Svetlana Lazebnik, Dan Klein, Stuart Russell, Andrew Moore,
CSPs Tamara Berg CS Artificial Intelligence Many slides throughout the course adapted from Svetlana Lazebnik, Dan Klein, Stuart Russell, Andrew.
Constraint Satisfaction Problems Chapter 6. Review Agent, Environment, State Agent as search problem Uninformed search strategies Informed (heuristic.
Chapter 5 Section 1 – 3 1.  Constraint Satisfaction Problems (CSP)  Backtracking search for CSPs  Local search for CSPs 2.
תכנון ובעיות " קשות " בינה מלאכותית אבי רוזנפלד. יש בעיות שכנראה המחשב לא יכול לפתור P NP NP-Complete.
CSC 8520 Spring Paula Matuszek Based on Hwee Tou Ng, aima.eecs.berkeley.edu/slides-ppt, which are based on Russell, aima.eecs.berkeley.edu/slides-pdf.
Hande ÇAKIN IES 503 TERM PROJECT CONSTRAINT SATISFACTION PROBLEMS.
1 Constraint Satisfaction Problems Soup Total Cost < $30 Chicken Dish Vegetable RiceSeafood Pork Dish Appetizer Must be Hot&Sour No Peanuts No Peanuts.
CSCI 5582 Fall 2006 CSCI 5582 Artificial Intelligence Fall 2006 Jim Martin.
1 Chapter 5 Constraint Satisfaction Problems. 2 Outlines  Constraint Satisfaction Problems  Backtracking Search for CSPs  Local Search for CSP  The.
CSC 8520 Spring Paula Matuszek CS 8520: Artificial Intelligence Search 3: Constraint Satisfaction Problems Paula Matuszek Spring, 2013.
Lecture 5: Solving CSPs Fast! 1/30/2012 Robert Pless – Wash U. Multiple slides over the course adapted from Kilian Weinberger, Dan Klein (or Stuart Russell.
Constraint Satisfaction Problems (Chapter 6)
1 Constraint Satisfaction Problems Chapter 5 Section 1 – 3 Grand Challenge:
CHAPTER 5 SECTION 1 – 3 4 Feb 2004 CS Constraint Satisfaction 1 Constraint Satisfaction Problems.
Constraint Satisfaction Problems University of Berkeley, USA
Constraint Satisfaction Problems Chapter 6. Outline CSP? Backtracking for CSP Local search for CSPs Problem structure and decomposition.
4/18/2005EE5621 EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 5, 4/18/2005 University of Washington, Department of Electrical Engineering Spring.
1. 2 Outline of Ch 4 Best-first search Greedy best-first search A * search Heuristics Functions Local search algorithms Hill-climbing search Simulated.
Computing & Information Sciences Kansas State University Friday, 08 Sep 2006CIS 490 / 730: Artificial Intelligence Lecture 7 of 42 Friday, 08 September.
Chapter 5 Team Teaching AI (created by Dewi Liliana) PTIIK Constraint Satisfaction Problems.
EXAMPLE: MAP COLORING. Example: Map coloring Variables — WA, NT, Q, NSW, V, SA, T Domains — D i ={red,green,blue} Constraints — adjacent regions must.
1 Constraint Satisfaction Problems Chapter 5 Section 1 – 3.
Dr. Shazzad Hosain Department of EECS North South University Lecture 01 – Part C Constraint Satisfaction Problems.
1 Constraint Satisfaction Problems (CSP). Announcements Second Test Wednesday, April 27.
Constraint Satisfaction Problems
Introduction to graphical models. Outline Course goals and policies Overview of graphical models, examples Constraint networks Probabilistic networks.
CMPT 463. What will be covered A* search Local search Game tree Constraint satisfaction problems (CSP)
Cse 150, Fall 2012Gary Cottrell: Many slides borrowed from David Kriegman! Constraint Satisfaction Problems Introduction to Artificial Intelligence CSE.
CS 561, Session 8 1 This time: constraint satisfaction - Constraint Satisfaction Problems (CSP) - Backtracking search for CSPs - Local search for CSPs.
ECE 448, Lecture 7: Constraint Satisfaction Problems
Constraint Satisfaction Problems Lecture # 14, 15 & 16
Advanced Artificial Intelligence
Constraint Satisfaction Problems
Constraint Satisfaction Problems
Constraint Satisfaction Problems
Artificial Intelligence
Constraint Satisfaction Problems
Constraint Satisfaction Problems
Constraint satisfaction problems
Constraint Satisfaction Problems. A Quick Overview
CS 8520: Artificial Intelligence
Constraint Satisfaction Problems
Constraint satisfaction problems
Constraint Satisfaction Problems (CSP)
Presentation transcript:

Chapter 5: Constraint Satisfaction ICS 171 Fall 2006

Sudoku Each row, column and major block must be alldifferent “Well posed” if it has unique solution: 27 constraints Constraint propagation Variables: 81 slots Domains = {1,2,3,4,5,6,7,8,9} Constraints: 27 not-equal

Sudoku Each row, column and major block must be alldifferent “Well posed” if it has unique solution

Outline Constraint Satisfaction Problems (CSP) Backtracking search for CSPs Problem structure and problem decomposition Local search for CSPs

Constraint satisfaction problems (CSPs) Standard search problem: –state is a "black box“ – any data structure that supports successor function, heuristic function, and goal test CSP: –state is defined by variables X i with values from domain D i –goal test is a set of constraints specifying allowable combinations of values for subsets of variables Simple example of a formal representation language Allows useful general-purpose algorithms with more power than standard search algorithms

Example: Map-Coloring Variables WA, NT, Q, NSW, V, SA, T Domains D i = {red,green,blue} Constraints: adjacent regions must have different colors e.g., WA ≠ NT, or (WA,NT) in {(red,green),(red,blue),(green,red), (green,blue),(blue,red),(blue,green)}

Example: Map-Coloring Solutions are complete and consistent assignments, e.g., WA = red, NT = green,Q = red,NSW = green,V = red,SA = blue,T = green

Constraint graph Binary CSP: each constraint relates two variables Constraint graph: nodes are variables, arcs are constraints

Varieties of CSPs Discrete variables –finite domains: n variables, domain size d  O(d n ) complete assignments e.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete) –infinite domains: integers, strings, etc. e.g., job scheduling, variables are start/end days for each job need a constraint language, e.g., StartJob ≤ StartJob 3 Continuous variables –e.g., start/end times for Hubble Space Telescope observations –linear constraints solvable in polynomial time by linear programming

Varieties of constraints Unary constraints involve a single variable, –e.g., SA ≠ green Binary constraints involve pairs of variables, –e.g., SA ≠ WA Higher-order constraints involve 3 or more variables, –e.g., cryptarithmetic column constraints

Example: Cryptarithmetic Variables: F T U W R O X 1 X 2 X 3 Domains: {0,1,2,3,4,5,6,7,8,9} Constraints: Alldiff (F,T,U,W,R,O) –O + O = R + 10 · X 1 –X 1 + W + W = U + 10 · X 2 –X 2 + T + T = O + 10 · X 3 –X 3 = F, T ≠ 0, F ≠ 0

Real-world CSPs Assignment problems –e.g., who teaches what class Timetabling problems –e.g., which class is offered when and where? Transportation scheduling Factory scheduling Notice that many real-world problems involve real-valued variables

Standard search formulation (incremental) Let's start with the straightforward approach, then fix it States are defined by the values assigned so far Initial state: the empty assignment { } Successor function: assign a value to an unassigned variable that does not conflict with current assignment  fail if no legal assignments Goal test: the current assignment is complete 1.This is the same for all CSPs 2.Every solution appears at depth n with n variables  use depth-first search 3.Path is irrelevant, so can also use complete-state formulation 4.b = (n - l )d at depth l, hence n! · d n leaves

Backtracking search Variable assignments are commutative, i.e., [ WA = red then NT = green ] same as [ NT = green then WA = red ] Only need to consider assignments to a single variable at each node  b = d and there are $d^n$ leaves Depth-first search for CSPs with single-variable assignments is called backtracking search Backtracking search is the basic uninformed algorithm for CSPs Can solve n-queens for n ≈ 25

Backtracking search

Backtracking example

Improving backtracking efficiency General-purpose methods can give huge gains in speed: –Which variable should be assigned next? –In what order should its values be tried? –Can we detect inevitable failure early?

The search space depends on the variable orderings

Search space and the effect of ordering

Most constrained variable Most constrained variable: choose the variable with the fewest legal values a.k.a. minimum remaining values (MRV) heuristic

Most constraining variable Tie-breaker among most constrained variables Most constraining variable: –choose the variable with the most constraints on remaining variables

Least constraining value Given a variable, choose the least constraining value: –the one that rules out the fewest values in the remaining variables Combining these heuristics makes 1000 queens feasible

Forward checking Idea: –Keep track of remaining legal values for unassigned variables –Terminate search when any variable has no legal values

Forward checking Idea: –Keep track of remaining legal values for unassigned variables –Terminate search when any variable has no legal values

Forward checking Idea: –Keep track of remaining legal values for unassigned variables –Terminate search when any variable has no legal values

Forward checking Idea: –Keep track of remaining legal values for unassigned variables –Terminate search when any variable has no legal values

Constraint propagation Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures: NT and SA cannot both be blue! Constraint propagation repeatedly enforces constraints locally

Arc consistency Simplest form of propagation makes each arc consistent X  Y is consistent iff for every value x of X there is some allowed y

Arc consistency Simplest form of propagation makes each arc consistent X  Y is consistent iff for every value x of X there is some allowed y

Arc consistency Simplest form of propagation makes each arc consistent X  Y is consistent iff for every value x of X there is some allowed y If X loses a value, neighbors of X need to be rechecked

Arc consistency Simplest form of propagation makes each arc consistent X  Y is consistent iff for every value x of X there is some allowed y If X loses a value, neighbors of X need to be rechecked Arc consistency detects failure earlier than forward checking Can be run as a preprocessor or after each assignment

Arc consistency algorithm AC-3 Time complexity: O(n 2 d 3 )

Arc-consistency 32,1, 32,1,32,1, 1  X, Y, Z, T  3 X  Y Y = Z T  Z X  T XY TZ 32,1,  =  

1  X, Y, Z, T  3 X  Y Y = Z T  Z X  T XY TZ  =   Incorporated into backtracking search Arc-consistency

Arc-consistency algorithm domain of x domain of y Arc is arc-consistent if for any value of there exist a matching value of Algorithm Revise makes an arc consistent Begin 1. For each a in D i if there is no value b in D j that matches a then delete a from the D j. End. Revise is, k is the number of value in each domain.

Example applying AC-3

Sudoku Each row, column and major block must be alldifferent “Well posed” if it has unique solution

Sudoku Each row, column and major block must be alldifferent “Well posed” if it has unique solution

Sudoku Each row, column and major block must be alldifferent “Well posed” if it has unique solution: 27 constraints Constraint propagation Variables: 81 slots Domains = {1,2,3,4,5,6,7,8,9} Constraints: 27 not-equal

Sudoku Each row, column and major block must be alldifferent “Well posed” if it has unique solution

Local search for CSPs Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned To apply to CSPs: –allow states with unsatisfied constraints –operators reassign variable values Variable selection: randomly select any conflicted variable Value selection by min-conflicts heuristic: –choose value that violates the fewest constraints –i.e., hill-climb with h(n) = total number of violated constraints

Example: 4-Queens States: 4 queens in 4 columns (4 4 = 256 states) Actions: move queen in column Goal test: no attacks Evaluation: h(n) = number of attacks Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)

Summary CSPs are a special kind of problem: –states defined by values of a fixed set of variables –goal test defined by constraints on variable values Backtracking = depth-first search with one variable assigned per node Variable ordering and value selection heuristics help significantly Forward checking prevents assignments that guarantee later failure Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies The CSP representation allows analysis of problem structure Tree-structured CSPs can be solved in linear time Iterative min-conflicts is usually effective in practice