Optimization of L-band sea surface emissivity models deduced from SMOS data X. Yin (1), J. Boutin (1), N. Martin (1), P. Spurgeon (2) (1) LOCEAN, Paris,

Slides:



Advertisements
Similar presentations
Analysis of AMSR-E C & X-band Tb data dependencies with wind & wave characteristics.
Advertisements

SMOS L2 Ocean Salinity Commissioning Plan, 07/05/2009 Level 2 Ocean Salinity Processor Commissioning Plan 7 May 2009 ARGANS ACRI-ST ICM-CSIC.
SMOS L2 Ocean Salinity Level 2 Ocean Salinity L20S Tool Box Architecture & Release 27 June 2014 ARGANS & SMOS L2OS ESL.
SMOS L2 Ocean Salinity Reprocessed constant calibration L1c OTT drift study 13 April 2011 ARGANS & L2OS ESL ascendingdescending.
1 © ACRI-ST, all rights reserved – 2012 Galactic noise model adjustment Jean-Luc Vergely (ACRI-ST) Jacqueline Boutin (LOCEAN) Xiaobin Yin (LOCEAN)
UPDATE ON BIAS TRENDS, DIRECT SUN CORRECTION, AND ROUGHNESS CORRECTION Joe Tenerelli May 10, 2011.
AN INITIAL LOOK AT THE IMPACT OF THE NEW ANTENNA LOSS MODEL Joe Tenerelli SMOS QUALITY WORKING GROUP #4 7-9 March 2011.
REVIEW OF OBSERVED BIAS TRENDS OVER THE OCEAN AND POTENTIAL IMPACT OF PROCESSOR EVOLUTION Joe & Nicolas IFREMER/CLS ESL Quality Working Group #5 May 30-31,
SMOS – in situ comparisons J. Boutin*, N. Martin*, O. Hernandez*, N. Reul , G. Reverdin* *LOCEAN,  IFREMER.
OSE meeting GODAE, Toulouse 4-5 June 2009 Interest of assimilating future Sea Surface Salinity measurements.
SMOS L1v620-L2v613 versus L1v505- L2v550 validation May 2011 Nicolas Martin, Jacqueline Boutin LOCEAN 26 May 2014.
SMOS L2 Ocean Salinity Level 2 Ocean Salinity L1 -> L2OS tools 12 February 2014 ARGANS & SMOS L2OS ESL.
SMOS L2 Ocean Salinity Level 2 Ocean Salinity Using TEC estimated from Stokes 3 24 October 2012 ACRI-st, LOCEAN & ARGANS SMOS+polarimetry.
1 © ACRI-ST, all rights reserved – 2012 TEC estimation Jean-Luc Vergely (ACRI-ST) Jacqueline Boutin (LOCEAN)
Aquarius Status Salinity Retrieval and Applications D. M. Le Vine NASA/GSFC, Greenbelt, MD E. P. Dinnat, G. Lagerloef, P. de Matthaeis, H. Kao, F.
The Aquarius Salinity Retrieval Algorithm Frank J. Wentz and Thomas Meissner, Remote Sensing Systems Gary S. Lagerloef, Earth and Space Research David.
MIRAS performance based on OS data SMOS MIRAS IOP 6 th Review, ESAC – 17 June 2013 Prepared by: J. Font, SMOS Co-Lead Investigator, Ocean Salinity – ICM-CSIC.
IFREMER EMPIRICAL ROUGHNESS MODEL Joe Tenerelli, CLS, Brest, France, November 4, 2010.
VARIABILITY OF OCEAN CO 2 PARTIAL PRESSURE AND AIR-SEA CO 2 FLUXES IN THE SUBANTARCTIC ZONE OF THE SOUTHERN OCEAN J. Boutin (1), L. Merlivat (1) and K.
1 Boutin et al., Avril 2015, SMOS-OCEAN TOSCA SMOS Salinity anomalies – Towards the correction of SMOS SSS systematic biases - J. Boutin 1, N. Martin 1,
1 Boutin et al., 2014 SMOS Salinity anomalies: new insights into SMOS capability at sensing SSS variability and into the improvements to be made in the.
Sea water dielectric constant, temperature and remote sensing of Sea Surface Salinity E. P. Dinnat 1,2, D. M. Le Vine 1, J. Boutin 3, X. Yin 3, 1 Cryospheric.
Cold Sky Calibration Aquarius: D. M. Le Vine MWR: J. C. Gallo.
Aquarius/SAC-D Mission Mission Simulators - Gary Lagerloef 6 th Science Meeting; Seattle, WA, USA July 2010.
Magdalena D. Anguelova, Ferris Webster, Peter Gaiser 12 May, 2004 Effects of Environmental Variables in Sea Spray Generation Function via Whitecap Coverage.
Ifremer Planning of Cal/Val Activities during In orbit commisioning Phase N. Reul, J. Tenerelli, S. Brachet, F. Paul & F. Gaillard, ESL & GLOSCAL teams.
Galactic noise model adjustment Jean-Luc Vergely (ACRI-ST) Jacqueline Boutin (LOCEAN) Xiaobin Yin (LOCEAN)
MWR Roughness Correction Algorithm for the Aquarius SSS Retrieval W. Linwood Jones, Yazan Hejazin, Salem Al-Nimri Central Florida Remote Sensing Lab University.
SMOS Science Workshop, Arles, th Sept, 2011 IMPROVING SMOS SALINITY RETRIEVAL: SYSTEMATIC ERROR DIAGNOSTIC J. Gourrion, R. Sabia, M. Portabella,
SMOS QWG-5, 30 May- 1 June 2011, ESRIN Ocean Salinity 1 1.Commissioning reprocessing analysis 2.New processor version: improvements and problems detected/solved.
SMOS SSS and wind speed J. Boutin, X. Yin, N. Martin -Optimization of roughness/foam model -Comparison of new-old ECMWF wind speeds -SSS anomaly in the.
Calibration and Validation Studies for Aquarius Salinity Retrieval PI: Shannon Brown Co-Is: Shailen Desai and Anthony Scodary Jet Propulsion Laboratory,
UPDATE ON THE SUN GLINT Joe Tenerelli Ocean Data Lab SMOS Level 2 OS Progress Meeting 26 SMOS Barcelona Expert Centre Barcelona, Spain April 2015.
SMOS L2 Ocean Salinity Level 2 Ocean Salinity L2OS planning 2 July 2014 ARGANS & SMOS L2OS ESL 1.
SPCM-9, Esac, May 3 rd, 2012 MODEL-INDEPENDENT ESTIMATION OF SYSTEMATIC ERRORS IN SMOS BRIGHTNESS TEMPERATURE IMAGES J. Gourrion, S. Guimbard, R. Sabia,
Dependence of SMOS/MIRAS brightness temperatures on wind speed and foam model Xiaobin Yin, Jacqueline Boutin LOCEAN & ARGANS.
OSTST, March 12-15, 2007 – 1 Charles Desportes (CLS)& Estelle Obligis (CLS), Laurence Eymard (LOCEAN) On the Wet Tropospheric Correction for Altimetry.
EXTENDING THE LAND SEA CONTAMINATION CHARACTERIZATION TO THE EXTENDED ALIAS- FREE FIELD OF VIEW Joe Tenerelli (CLS) and Nicolas Reul (IFREMER) SMOS Quality.
Introduction Martin et al. JGR, 2014 CAROLS airborne Tbs indicate slightly lower wind influence than predicted by model 1 at high WS In model 1 previous.
Space Reflecto, November 4 th -5 th 2013, Plouzané Characterization of scattered celestial signals in SMOS observations over the Ocean J. Gourrion 1, J.
Sea Surface Salinity as Measured by SMOS and by Surface Autonomous Drifters: Impact of Rain J. Boutin, N. Martin, X. Yin, G. Reverdin, S. Morrisset LOCEAN,
Sea Surface Salinity under rain cells: SMOS satellite and in-situ drifters observations J. Boutin 1, N. Martin 1, G. Reverdin 1,S. Morisset 1, X. Yin 1,
USING SMOS POLARIMETRIC BRIGHTNESS TEMPERATURES TO CORRECT FOR ROUGH SURFACE EMISSION BEFORE SALINITY INVERSION.
SMOS-BEC – Barcelona (Spain) LO calibration frequency impact Part II C. Gabarró, J. Martínez, V. González, A. Turiel & BEC team SMOS Barcelona Expert Centre.
SMOS-BEC – Barcelona (Spain) Assessment of impact of new ECMWF cycle 38r2 BEC team SMOS Barcelona Expert Centre Pg. Marítim de la Barceloneta 37-49, Barcelona.
QWG-10 ESRIN 4-6 February 2013 Quality control study for SMOS data / Flags analysis C. Gabarró, J. Martínez, E. Olmedo M. Portabella, J. Font and BEC team.
QWG8, Boutin et al. SMOS and Aquarius: SSS and Wind Effect J. Boutin, X. Yin, N. Martin (LOCEAN, Paris), E. Dinnat (Chapman University/NASA/GSFC), S. Yueh.
IASI CH 4 Operational Retrieval Feasibility - Optimal Estimation Method Task 1+3: Updates Richard Siddans, Jane Hurley PM2, webex 10 October 2014.
SMOS QWG-9, ESRIN October 2012 L2OS: Product performance summary v550 highlights 1 The SMOS L2 OS Team.
New model used existing formulation for foam coverage and foam emissivity; tested over 3 half orbits in the Pacific foam coverage exponent modified to.
Sea Surface Salinity under rain cells: SMOS satellite and in-situ drifters observations J. Boutin 1, N. Martin 1, G. Reverdin 1,S. Morisset 1, X. Yin 1,
SMOS mission: a new way for monitoring Sea Surface Salinity? J. Boutin (1) (1) Laboratoire d’Oceanographie et du Climat- Expérimentation et Applications.
T. Meissner and F. Wentz Remote Sensing Systems 2014 Aquarius / SAC-D Science Team Meeting November , 2014 Seattle. Washington,
21-23/04/2015PM27 J-L Vergely, J. Boutin, N. Kolodziejczyk, N. Martin, S. Marchand SMOS RFI/Outlier filtering.
A step toward operational use of AMSR-E horizontal polarized radiance in JMA global data assimilation system Masahiro Kazumori Numerical Prediction Division.
SMOS L2 Ocean Salinity – PM#25 1/20 Level 2 Ocean Salinity May 2013 A3TEC.
SMOS Science Meeting September 2011 Arles, FR Simulating Aquarius by Resampling SMOS Gary Lagerloef, Yann Kerr & Eric Anterrieu and Initial Results.
Impact of sea surface roughness on SMOS measurements A new empirical model S. Guimbard & SMOS-BEC Team SMOS Barcelona Expert Centre Pg. Marítim de la Barceloneta.
Errors on SMOS retrieved SSS and their dependency to a priori wind speed X. Yin 1, J. Boutin 1, J. Vergely 2, P. Spurgeon 3, and F. Gaillard 4 1. LOCEAN.
UPDATE ON GALACTIC NOISE CORRECTION Joe Tenerelli SMOS Quality Working Group #9 ESA ESRIN 24 October 2012.
Dependence of SMOS/MIRAS brightness temperatures on wind speed: sea surface effect and latitudinal biases Xiaobin Yin, Jacqueline Boutin LOCEAN.
QWG10, Boutin & Hernandez Large scale SSS inter-annual variability in tropical Indian and Pacific Oceans J. Boutin 1, O. Hernandez 1, N. Martin 1, G. Reverdin.
Universitat Politècnica de Catalunya CORRECTION OF SPATIAL ERRORS IN SMOS BRIGHTNESS TEMPERATURE IMAGES L. Wu, I. Corbella, F. Torres, N. Duffo, M. Martín-Neira.
Tests on V500 Sun On versus Sun Off 1)Tbmeas. –Tbmodel in the FOV X. Yin, J. Boutin Inputs from R. Balague, P. Spurgeon, A. Chuprin, M. Martin-Neira and.
Magdalena D. Anguelova Michael H. Bettenhausen Michael H. Bettenhausen William F. Johnston William F. Johnston Peter W. Gaiser Peter W. Gaiser Whitecap.
(2) Norut, Tromsø, Norway Improved measurement of sea surface velocity from synthetic aperture radar Morten Wergeland Hansen.
Roughness Correction for Aquarius (AQ) Sea Surface Salinity (SSS) Algorithm using MicroWave Radiometer (MWR) W. Linwood Jones, Yazan Hejazin Central FL.
Comparisons of Two Preliminary Windsat Vector Wind Data Sets with
Aquarius SSS space/time biases with respect to Argo data
Dorothee Coppens.
Presentation transcript:

Optimization of L-band sea surface emissivity models deduced from SMOS data X. Yin (1), J. Boutin (1), N. Martin (1), P. Spurgeon (2) (1) LOCEAN, Paris, France (2) ARGANS, Plymouth, UK Two scale + foam

Adjustment of some parameters of roughness and foam modeling Roughness: Omnidirectional wave spectrum Durden & Vesecki,1985 : Foam coverage (from Monahan & O'Muircheartaigh 1986): a 0 ? Original publication: a 0 =0.004; DV2, a 0 =0.008 b? c? original publication: b=1.95×10-5, c=2.55 ; ΔT =Tsea-Tair (neglected in this first step study); in first SMOS SSS1 processing, F=0: no foam. Foam emissivity (Stogryn, 1972): assumed to be correct ~0.2K/m/s Dinnat et al., IJRS, 2002, Radio Science, 2003 At 15°C, a 0.1K Tb variation can be generated by : -0.2pss SSS variation or - 0.5m/s wind speed variation 10m equivalent neutral wind speed (m/s) Nadir Th_30° DV2

Modeling of SMOS Tbs Tb = Tb atm ↑ + R sea (Tb atm ↓ + Tb sky ) exp(-  atm ) + Tb sea exp(-  atm ) Ocean Atmosphere Tb sea = (Tb flat +Tb rough ) (1-F) + F Tb foam e sea derived from SMOS Tbs after correcting for all other effects Tb sea =e sea SST

Incidence angle (°)Radiometric accuracy Along track in the AFFOV 0 5K 0 SMOS Tbs: Tbs along track (~ no mixing of polarization) in the AFFOV (good radiometric accuracy) from 19 ascending orbits in August (low galactic noise) in the South Pacific (far from land) from 50°S to 0°N – Incidence angles from 20° to 55° SMOS data used in the fit

Three different sets of wind induced components deduced from SMOS 1.There are totally samples in H polarization and in V polarization collocated with ECMWF WS in range of 3-17ms % of the ECMWF wind speeds ( samples in H polarization and in V polarization) have been collocated with SSMI WS in range of 3-17 ms -1 : +-0.5h +-50km samples in H polarization and in V polarization, when the differences between ECMWF and SSMI WS were restricted to be less than 2 ms -1

3m/s<U<7m/s a 0 (prior=0.004 – 0.008) 8m/s<U<17m/s b, c Data fitting Wind induced component of emissivity deduced Er_SMOS (θi, p, ws)= Eres (θi, p) + Espectrum(a0; θi, p, ws) (20-55° in step of 5°) Incidence angle (°)

a0a0 bc M × M × M ×

M1M1 M2 M3 ECMWF ECMWF+SSMI SSMIECMWF

Results in AFFOV H pol. 20 ° V pol. 20 ° H pol. 30 ° V pol. 30 ° H pol. 40 ° V pol. 40 ° H pol. 50 ° V pol. 50 ° H pol. 55 ° V pol. 55 ° ECMWF WS

Results in EAFFOV ? H pol. 0 ° V pol. 0 ° V pol. 10 ° V pol. 20 °

Comparisons w.r.t WOA05 Old model 1 (DV2) New parametrization for roughness and foam coverage Monthly averages, Pacific Ocean, August 2010 SSS North-South profile,

1. The tropical Southern Pacific ocean (20°S10°S- 140°W110°W) far away from continent and island characterized by relative stable moderate wind speed and high SST; mean (standard deviation) of SST and SSS are 24.5 (1.0) °C and 36.2 (0.3) pss 2. The high latitude Southern Pacific ocean (50°S45°S- 180°W100°W) characterized by very variable wind speed and low SST; mean (standard deviation) of SST and SSS are 9,8 (1.8) °C and 34,4 (0.2) pss

SMOS SSS retrieved with the pre-launch model 1 SMOS SSS with the new model M1 in red for the tropical Southern Pacific and in green for the high latitude Southern Pacific

Summary SMOS data evidence that Tb(U) is non linear A reasonnable fit to SMOS data is obtained when introducing a foam coverage parametrization close to Monahan and Muircheartaigh (1986), (this foam coverage may be peculiar to L-band and depends on the foam emissivity model) Parameter for the wave spectrum (a0) slightly higher than Preliminary validation shows improvement in mean retrieved SSS A larger set of SMOS data should be used for validating and/or improving model Study the quality of SSS retrieved at high wind speed when putting a larger error on ECMWF wind speed. Check SMOS measurements taken in the EAFFOV

Latitudinal drift ? EH_SMOS - EH_Model, 0deg EV_SMOS - EV_Model, 0deg

Zone Southern Pacific Latitude 50S-40S20S-10S Longitude 180W-100W140W-110W SST (°C) σSST (°C) SSS (pss) σSSS (pss) pre-launch model 1 Wind speed (ms -1 ) No. of collocations mean(SSS smos -SSS argo ) (pss) σ (SSSsmos-SSSargo) (pss) median(SSS smos -SSS argo ) (pss) New model M1 No. of collocations mean(SSS smos -SSS argo ) (pss) σ (SSSsmos-SSSargo) (pss) median(SSS smos -SSS argo ) (pss) Statistics of SMOS SSS collocated with ARGO at +/-5days and +/-50km during August ascending passes