A.Bartl (Univ. of Vienna) W.Majerotto HEPHY (Vienna)

Slides:



Advertisements
Similar presentations
Hadron physics with GeV photons at SPring-8/LEPS II
Advertisements

Feasibility study of measurement of Higgs pair creation in a gamma-gamma collider Shin-ichi Kawada Advanced Sciences of Matter, Hiroshima University LCWS11.
3.Phenomenology of Two Higgs Doublet Models. Charged Higgs Bosons.
Ultra Peripheral Collisions at RHIC Coherent Coupling Coherent Coupling to both nuclei: photon~Z 2, Pomeron~A 4/3 Small transverse momentum p t ~ 2h 
P hysics background for luminosity calorimeter at ILC I. Božović-Jelisavčić 1, V. Borka 1, W. Lohmann 2, H. Nowak 2 1 INN VINČA, Belgrade 2 DESY, Hamburg.
1 Rutherford Appleton Laboratory The 13th Annual International Conference on Supersymmetry and Unification of the Fundamental Interactions Durham, 2005.
Ali Hanks - APS Direct measurement of fragmentation photons in p+p collisions at √s = 200GeV with the PHENIX experiment Ali Hanks for the PHENIX.
Susy05, Durham 21 st July1 Split SUSY at Colliders Peter Richardson Durham University Work done in collaboration with W. Kilian, T. Plehn and E. Schmidt,
NLC - The Next Linear Collider Project  IR background issues and plans for Snowmass Jeff Gronberg/LLNL Linear Collider Workshop October 25, 2000.
Search for resonances The fingerprints of the Top Quark Jessica Levêque, University of Arizona Top Quark Mass Measurement Top Turns Ten Symposium, Fermilab,
Single-Top Cross Section Measurements at ATLAS Patrick Ryan (Michigan State University) Introduction to Single-Top The measurement.
Paris 22/4 UED Albert De Roeck (CERN) 1 Identifying Universal Extra Dimensions at CLIC  Minimal UED model  CLIC experimentation  UED signals & Measurements.
Michele Faucci Giannelli, Mike Green, Veronique Boisvert, Fabrizio Salvatore, Tao Wu LCWS 08, Chicago, 18 November 2008 Sensitivity to the Higgs self-coupling.
TESLA - The TEV-Energy Superconducting Linear Accelerator Light Higgs Production at the Tesla Photon Collider Aura Rosca DESY Zeuthen Amsterdam, Netherlands,
Feb High-pT Physics at Prague1 T. Horaguchi Hiroshima University Feb. 4 for the 4 th International Workshop.
Tau Jet Identification in Charged Higgs Search Monoranjan Guchait TIFR, Mumbai India-CMS collaboration meeting th March,2009 University of Delhi.
Determination of Heavy Smuon and Selectron Mass at CLIC Outline Physics motivation Mass measurement methods (Energy scan, End Point) Energy spread, ISR.
NLC – The Next Linear Collider Project Colorado Univ. - Boulder Prague LCD Presentation Status of SPS1 Analysis at Colorado Uriel Nauenberg for the Colorado.
1 Simulation study of e + e -  W H + W H - Introduction Observable to be measured Analysis framework Event selection Results Rei Sasaki (Tohoku University)
Irakli Chakaberia Final Examination April 28, 2014.
1 A Preliminary Model Independent Study of the Reaction pp  qqWW  qq ℓ qq at CMS  Gianluca CERMINARA (SUMMER STUDENT)  MUON group.
ESFA/DESY LC Workshop 1 Klaus Mönig and Jadranka Sekaric Klaus Mönig and Jadranka Sekaric DESY - Zeuthen MEASUREMENT OF TGC IN e  COLLISIONS AT TESLA.
Model-independent WIMP searches at ILC with single photon Andrii Chaus (CEA/DESY), Jenny List (DESY), Maxim Titov (CEA) BSM Session, Belgrade, Serbia,
Precise Measurements of SM Higgs at the ILC Simulation and Analysis V.Saveliev, Obninsk State University, Russia /DESY, Hamburg ECFA Study Workshop, Valencia.
Search for Invisible Higgs Decays at the ILC Akimasa Ishikawa (Tohoku University)
L. Bellagamba, Excited fermions and other searches at HERA 1 International Conference on High Energy Physics Amsterdam July 2002 Excited fermions.
Sensitivity Prospects for Light Charged Higgs at 7 TeV J.L. Lane, P.S. Miyagawa, U.K. Yang (Manchester) M. Klemetti, C.T. Potter (McGill) P. Mal (Arizona)
Optimization of parameters for jet finding algorithm for p+p collisions at E cm =200 GeV T. G. Dedovich & M.V. Tokarev JINR, Dubna  Motivations.
Top threshold Monte Carlo generator Stewart Boogert John Adams Institute Royal Holloway, University of London Filimon Gournaris (Ph.D student and majority.
Possibility of tan  measurement with in CMS Majid Hashemi CERN, CMS IPM,Tehran,Iran QCD and Hadronic Interactions, March 2005, La Thuile, Italy.
Trilinear Gauge Couplings at TESLA Photon Collider Ivanka Božović - Jelisavčić & Klaus Mönig DESY/Zeuthen.
14-18 November, PrahaECFA/DESY Linear Collider Workshop 1 TRILINEAR GAUGE COUPLINGS AT PHOTON COLLIDER - e  mode DESY - Zeuthen Klaus Mönig and Jadranka.
Deeply Virtual Compton Scattering on the neutron Malek MAZOUZ LPSC Grenoble EINN 2005September 23 rd 2005.
ILC-ECFA Workshop Valencia November 2006 Four-fermion processes as a background in the ILC luminosity calorimeter for the FCAL Collaboration I. Božović-Jelisavčić,
Prospects of Discovering a New Massless Neutral Gauge Boson at the ILC E. Boos 1, V. Bunichev 1 and H.J. Schreiber 2 1 Institute of Nuclear Physics, Moscow.
Physics at a  low energy  collider Steve Asztalos LLNL.
Taikan Suehara, 16 th general meeting of ILC physics (Asia) wg., 2010/07/17 page 1 Model 500 GeV Taikan Suehara ICEPP, The Univ. of Tokyo.
Two photon physics with forward detectors Beata Krupa, Leszek Zawiejski Institute of Nuclear Physics Polish Academy of Sciences 22nd FCAL Collaboration.
DIS Conference, Madison WI, 28 th April 2005Jeff Standage, York University Theoretical Motivations DIS Cross Sections and pQCD The Breit Frame Physics.
February 27, 2003APPI20031 Study of Chargino Production in e + e ‐ Collisions at Large tanβ Yukihiro Kato Kinki University Collaboration with K.Fujii (KEK),
Feasibility study of Higgs pair production in a Photon Collider Tohru Takahashi Hiroshima University for S.Kawada, N.Maeda, K.Ikematsu, K.Fujii,Y.Kurihara,,,
2° ILD Workshop Cambridge 11-14/09/08 The sensitivity of the International Linear Collider to the     in the di-muon final state Nicola D’Ascenzo University.
AA->HH Study -Current status of AA->4b BG- Shin-ichi Kawada (AdSM, Hiroshima University) 19th General KEK (2011/1/29)1 AA->HH subgroup : Experiment.
Study of muon pairs production process at PANDA and its backgrounds A.N.Skachkova (JINR, Dubna) Obninsk 2010.
Jet Studies at CDF Anwar Ahmad Bhatti The Rockefeller University CDF Collaboration DIS03 St. Petersburg Russia April 24,2003 Inclusive Jet Cross Section.
E. Devetak - IOP 081 Anomalous – from tools to physics Erik Devetak Oxford - RAL IOP 2008 Lancaster‏ Anomalous coupling (Motivation – Theory)
On the possibility of stop mass determination in photon-photon and e + e - collisions at ILC A.Bartl (Univ. of Vienna) W.Majerotto HEPHY (Vienna) K.Moenig.
LCWS 05 1 Experimental studies of Strong Electroweak Symmetry Breaking in gauge boson scattering and three gauge boson production P.Krstonosic Work done.
Signatures of lepton-jet production at the LHC Eva Halkiadakis (Rutgers University) with Adam Falkowski, Yuri Gershtein (Rutgers University) Josh Ruderman.
Calibration of energies at the photon collider Valery Telnov Budker INP, Novosibirsk TILC09, Tsukuba April 18, 2009.
STAU CLIC Ilkay Turk Cakir Turkish Atomic Energy Authority with co-authors O. Cakir, J. Ellis, Z. Kirca with the contributions from A. De Roeck,
Régis Lefèvre (LPC Clermont-Ferrand - France)ATLAS Physics Workshop - Lund - September 2001 In situ jet energy calibration General considerations The different.
LumiCal background and systematics at CLIC energy I. Smiljanić, Vinča Institute of Nuclear Sciences.
Top Higgs Yukawa Coupling Analysis – Status Report Hajrah Tabassam Quai-i-Azam University, Islamabad ON BEHALF OF: R. Yonamine, T. Tanabe, K. Fujii, KEK.
Feasibility study of Higgs pair creation in gamma-gamma collider Hiroshima University Nozomi Maeda 19.April 2009.
SPS5 SUSY STUDIES AT ATLAS Iris Borjanovic Institute of Physics, Belgrade.
H. Jürgen Schreiber, ECFA/DESY Prague, Nov Future e + e - Collider Sensitivity to the HZ  Coupling M. Dubinin, H.J. Schreiber and A. Vologdin Standard.
Aug _5071 Top stop by charm channel analysis using D0 runI data OUTLINE physics process of top to stop Monte Carlo simulation for signal data.
V. Pozdnyakov Direct photon and photon-jet measurement capability of the ATLAS experiment at the LHC Valery Pozdnyakov (JINR, Dubna) on behalf of the HI.
Marcello Barisonzi First results of AOD analysis on t-channel Single Top DAD 30/05/2005 Page 1 AOD on Single Top Marcello Barisonzi.
Luminosity at  collider Marco Zanetti (MIT) 1. Intro,  colliders basics Luminosity at  colliders Sapphire simulation Alternative approaches Luminosity.
Photon spectrum and polarization for high conversion coefficient in Compton backscattering process A.P. Potylitsyn 1,2, A.M. Kolchuzhkin 3, M.N. Strikhanov.
AA->HH Study Event generation & Analysis of AA->4b BG Shin-ichi Kawada (AdSM, Hiroshima University) 21st General KEK (2011/7/16)1.
1 Stop pair production in photon-photon collision at ILC A.Bartl (Univ. of Vienna) W.Majerotto HEPHY (Vienna) K.Moenig DESY (Zeuthen) A.N.Skachkova, N.B.Skachkov.
Determining the CP Properties of a Light Higgs Boson
Vector Boson Fusion at CMS
Charged Current Cross Sections with polarised lepton beam at ZEUS
Charged Current Cross Sections with polarised lepton beam at ZEUS
Experimental and theoretical Group Torino + Moscow
Presentation transcript:

Pair production of scalar top quarks in polarized gamma-gamma collision at ILC A.Bartl (Univ. of Vienna) W.Majerotto HEPHY (Vienna) K.Moenig DESY (Zeuthen) A.N.Skachkova, N.B.Skachkov JINR (Dubna)

The Photon beams at ILC The option of a photon collider at ILC will be achieved by using backscattered photon beams by Compton scattering of laser beams on the electron beams. Unlike the situation at e+e- collider, the energy of the beams of backscattered photons will vary from event to event. Circe2 program gives the energy spectra of the colliding backscattered photons & the values of photon beam luminosities. QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

Photon beam characteristics The monochromaticity of the backscattered photon beams is considerably increased if the mean helicities λe and Pc of the electron beam and laser photon beam are chosen such that 2λePc ≈ -1. In this case the relative number of hard photons becomes nearly twice as large in the region of the photon energy fraction Y= Eiγ / Eebeam ≈ 0.7-0.85 (i=1,2) and the luminosity in collisions of these photons increases by a factor of 3-4. QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

Energy spectrum from CIRCE 2 shows the degree of monochromaticity of the backscattered photons We used as a reasonable approximation the CIRCE2 output spectra generated for E tot e+e- = 800 GeV and scaled them (by 1000/800) to the higher beam energy 2Eebeam = 1000 GeV The left peak is caused by multiple Compton scattering and beamstrahlung photons The right one at the energy fraction Y = Eiγ / Eebeam ≈ 0.83 (i=1,2) is due to the hard photon production Only on a 0.3% the γγ energy is high enough for γγ  stop stop bar production QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

γ-energy correlation Y1/Y2 spectra for J=0 enhanced (J – total angular momentum) Whole γ spectrum γ spectrum above stop pair production threshold Polarizations + - /- + Polarizations + +/- - QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

γ-energy correlation Y1/Y2 spectra for J=2 enhanced Whole γ spectrum γ spectrum above stop pair production threshold Polarizations + - /- + Polarizations + + /- - QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC” QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

STOP pair production cross sections e+ e- CM energy = 1000 GeV STOP pair production cross sections Ϭ = 2.03 fb “+ -” & “- +” Ϭ = 3.46 fb “+ +” & “- -” 4-6 factor difference TOP pair production cross sections Ϭ = 13.17 fb “+ -” & “- +” Ϭ = 15.57 fb “+ +” & “- -” PYTHIA 6.4 + cross section distribution formula taken from S.Berge et al. hep-ph/0008081 QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC” QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC” QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC” QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

( b & bbar - jets, 2 jets from W  qi qj decay and μˉ ). The subsequent decay channels have been considered: STOP STOP → b χ1+ b bar χ1- → b b bar qi qj bar μ- νμ χ1º χ1º t t → b W+ b bar W- → b b bar qi qj bar μˉ ν μ The only difference of STOP / TOP production is the presence of the two non-detectable neutralinos in the case of stop pair production. The quarks hadronize into jets. Jets are determined by use of PYCLUS jetfinder based on “Durham” cluster distance measure algorithm. Both the signal and background events have the same experimental signature ( b & bbar - jets, 2 jets from W  qi qj decay and μˉ ). QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

Cross-section σ dependence on Mstop QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC” QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

In order to simulate the STOP pair production, we assumed the following scenario for the MSSM model parameters: M ~Q = M ~t L = 270 GeV (left squark mass) M~U = M ~t R = 270 GeV (right squark mass) At = -500 GeV (top and bottom trilinear coupling) μ = - 370 GeV tanβ = 5 M1 = 80 GeV M2 = 160 GeV Our aim is: To find out physical variables (Energy, PT, angle and invariant mass distributions) most suitable for signal (stop) / background (top) separation To estimate the corresponding values of cuts on these variables Corresponds to Mstop = 167.9 GeV, M χ1º = 80.9 GeV M χ 1+ = 159.2 GeV QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

STOP Energy distributions The shapes of these spectra follow backscattered γ-energy distributions Polarization : ++/ -- Polarization : +- / -+ QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

STOP PT distributions Polarization : +- / -+ Polarization : ++/ -- The PT-spectrum for “++/--” polarization is much softer then for “+-/-+” polarization QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

STOP angle Θ distributions Polarization : +- / -+ Polarization : ++/ -- QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

Minv (stop+stopbar) = Minv (γγ) = √ (Pγ1 + Pγ2)2 distributions The shapes of these spectra also follow backscattered γ-energy distributions Polarization : +- / -+ Polarization : ++/ -- QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

E- spectra of jets from W STOP TOP Polarization : +- / -+ Polarization : ++/ -- QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

PT- spectra of jets from W STOP TOP Polarization : +- / -+ Polarization : ++/ -- QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

W mass reconstruction as Minv of 2 Wjets STOP Clear seen visible virtual nature of W boson TOP Partonic level Level of jets QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

E- spectra of b-jets (B-jet is determined as a jet that includes b-meson) STOP TOP Polarization : +- / -+ Polarization : ++/ -- QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

PT- spectra of b-jets STOP TOP Polarization : +- / -+ QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

Cos (b, bbar) spectra for Stop pairs production Polarization : +- / -+ Polarization : ++ / -- Most of b- and b bar – jets move approximately in the opposite directions, but some are in the same hemisphere QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

μ distributions in the signal events PTμ Signal μ’s Fake μ’s QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

Missing energy (νμ , ~χ1º , beam pipe) distributions STOP TOP Polarization : +- / -+ Polarization : ++ / -- QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

Total scalar Σni=1 |PTi| variable A cut PT skalsum < 180 GeV would lead to a good Signal / Background separation STOP TOP Polarization : +- / -+ Polarization : ++/ - - QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

Missing mass Mmissing = √(√s-(ΣNjet n=1Enjet+Eμ))2-(ΣNjet n=1Pnjet+Pμ))2 STOP Good for Signal / Background separation ! Mmissing > 650 GeV TOP Polarization : +- / -+ Polarization : ++/ -- QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

Invariant mass of 4jets + μ Good for Signal / Background separation with a cut < 230 GeV! STOP TOP Polarization : +- / -+ Polarization : ++ / -- QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

Invariant mass of 4 jets Minv(All jets)=√(Σi=1,2,3,4iPijet)2 Perfect for Signal / Background separation with cut M inv < 180 GeV! STOP TOP Polarization : +- / -+ Polarization : ++ / -- QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

Detected (visible) energy distributions Perfect for Signal / Background separation with a cut E vis_tot < 250 GeV ! STOP TOP Polarization : +- / -+ Polarization : ++ / -- QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

Used cuts for S/B separation Polarization : +- / -+ Polarization : ++ / -- 1. ) The events with clear recognized 2 B-jets (according to PYTHIA) Stop cut efficiency = 0.88 Stop cut efficiency = 0.80 Top cut efficiency = 0.94 Top cut efficiency = 0.94 But, in the experiment inly 50% efficiency of the B-jets and B bar-jets separation and the 80% of the corresponding purity is expected 2. ) Invariant mass of all jets M inv(All jets) < 180 GeV together with the cut above Stop cut efficiency = 0.89 Stop cut efficiency = 0.92 Top cut efficiency = 0.012 Top cut efficiency = 0.008 3. ) Visible energy < 250 GeV Stop cut efficiency = 0.98 Stop cut efficiency = 0.98 Top cut efficiency = 0.176 Top cut efficiency = 0.175 QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

Final result of S/B separation Polarization : +- / -+ Polarization : ++ / -- Achieved S/B ratio 59 120 With a loss of signal events 23 % 28 % The rest of Background events per year is only 24 19 while the estimated rate of Signal events per year 1484 2375 QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

Invariant mass of Bjet & 2jetsW Can also be used for Signal / Background separation with a cut < 120 GeV! STOP TOP Polarization : +- / -+ Polarization : ++ / -- QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

The most important variable - invariant mass of Bjet & 2jetsW In the case of TOP pair production it gives The mass reconstruction of the top-quark M Top (175 GeV) : M inv ( Bjet & 2jetsW ) = M Top QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

Stop invariant mass M inv (STOP) = M χ1º + M inv (bjet , 2jetsW) = The reconstruction of the STOP invariant mass M STOP (167.9 GeV): M inv (STOP) = M χ1º + M inv (bjet , 2jetsW) = = M χ1º + √ (Pbjet + Pjet1 W +Pjet2W) 2 But χ1º - is not detectable particle QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

Invariant mass of Bjet & 2jetsW For the case of STOP pair production gives M inv (Bjet , 2jetsW) = M inv (STOP) - M χ1º Right edge of Minv (Bjet , 2jetW) ≈ 87 GeV M χ1º ≈ 80 GeV Mstop = M χ1º + M inv(Bjet , 2jetW) = = 167 GeV QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC” QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

The test of the other Scalar top mass M stop = 200.1 GeV M χ1º = 80.9 GeV M χ1+ = 159.6 GeV Right edge of the peak of Minv (bjet , 2jetW) ≈ 120 GeV M χ1º ≈ 80 GeV Mstop = M χ1º + M inv(bjet , 2jetW) = 200 GeV Polarization : +- / -+ ++/-- Events/year : 347 1379 QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

Conclusion The main results: 1. New code for cross section of STOP pairs production that allows to take into account the polarizations of colliding photons is implemented into PYTHIA 6. An account of the energy spectrum of colliding photons is done by use of CIRCE 2. 2. It is shown also that the invariant mass of the final jets and the visible energy variables turns out to be most efficient for signal / background separation. 3. A possibility of a good MSTOP reconstruction from right-hand edge point of 3 jets ( Bjet + 2 jetsW ) is demonstrated. So, finally, it is shown that in a region of small values of stop mass ~ 167 GeV the channel STOP STOP → b χ1+ b χ1- → b b q q’ μ- νμ χ1º χ1º is very promising for the STOP-quark search! QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

Outback QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

Publications & previous presentations “Pair production of scalar top quarks in polarized photon-photon collisions at ILC. “ Authors: A.Bartl, W.Majerotto, K.Mönig, A.N.Skachkova, N.B.Skachkov arXiv: 0804.1700, ILC-NOTE-2007-036 “ Stop pair production in polarized photon-photon collisions”. A.Bartl, W.Majerotto, K.Moenig, A.Skachkova, N.Skachkov. Talk at the “International Conference on Linear Colliders”, LCWS04, 19-23 April 2004 , Paris, France Proceedings of the “International Conference on Linear Colliders”; LCWS 04 , volume II, p.919-922 “Stop pair production at ILC” (http://www.linearcollider.org/cms/?pid=1000364) Talk at the International Linear Collider Workshop (14-17 November 2005, Vienna, Austria) “Stop pair production in photon-photon collisions at ILC” Десятая научной конференции молодых ученых и специалистов ОИЯИ. Дубна, 6-10 февраля 2006 г. Труды десятой научной конференции молодых ученых и специалистов ОИЯИ. Дубна, 6-10 февраля 2006 г. стр. 135-138, ISBN 5-9751-0024-0 A.N.Skachkova. “Stop pair production in polarized gamma-gamma collisions at ILC”

Publications & previous presentations “Pair production of scalar top quarks in e+e- collisions at ILC. “ Authors: A.Bartl, W.Majerotto, K.Möniq, A.N.Skachkova, N.B.Skachkov arXiv: 0804.2125, ILC-NOTE-2008-042 “On pair production of scalar top quarks in e+e- collisions at ILC and a possibility of their mass reconstruction” Authors: A.Bartl, W.Majerotto, K.Moenig, A.N.Skachkova, N.B.Skachkov arXiv:0906.3805, Phys.Part.Nucl.Lett.6:181-189,2009 Talk at the “QUARKS-2008” (http://quarks.inr.ac.ru/) 15th International Seminar on High Energy Physics Sergiev Posad, Russia, 23-29 May, 2008. Published in the proceedings “Hadronic jets and search for stop quarks at ILC. “ Talk XIX International Baldin Seminar ISHEPP’08 (http://relnp.jinr..ru/ishepp) XIX International Baldin Seminar on High Energy physics problems “Relativistic nuclear physics & Quantum Chromodynamics”, JINR, Dubna, Russia  Proceedings of XIX International Baldin Seminar on High Energy Physics Problems, RELATIVISTIC NUCLEAR PHYSICS AND QUANTUM CHROMODYNAMICS , N XVI, V1 A.N.Skachkova. “Stop pair production in e+e - collisions at ILC”

E- spectra of quarks from W STOP TOP Polarization : +- / -+ Polarization : ++/ -- QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

PT- spectra of quarks from W STOP TOP Polarization : ++/ -- Polarization : +- / -+ QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

E- spectra of b-quarks STOP TOP Polarization : +- / -+ QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

PT- spectra of b-quarks STOP TOP Polarization : +- / -+ Polarization : ++/ -- QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”

θ of b-quarks for stop production Polarization : +- / -+ Polarization : ++/ -- QUARKS’2010 A.N.Skachkova. “Stop pair production in polarized γγ collisions at ILC”