69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 1/13 JPL Progress Report Accurate line intensities for 16 O 12 C 17 O (627) in the 2.1 µm region (the.

Slides:



Advertisements
Similar presentations
D. Chris Benner and V Malathy Devi College of William and Mary Charles E. Miller, Linda R. Brown and Robert A. Toth Jet Propulsion Laboratory Self- and.
Advertisements

High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Yu. I. BARANOV and W. J. LAFFERTY Optical Technology Division Optical Technology Division National Institute of Standards and Technology, Gaithersburg,
Victor Gorshelev, A. Serdyuchenko, M. Buchwitz, J. Burrows, University of Bremen, Germany; N. Humpage, J. Remedios, University of Leicester, UK IMPROVED.
Dual Wavelength Isotope Ratio FS-CRDS Thinh Q. Bui California Institute of Technology ISMS 2014.
The Water Molecule: Line Position and Line Intensity Analyses up to the Second Triad L. H. Coudert, a G. Wagner, b M. Birk, b and J.-M. Flaud a a Laboratoire.
Jet Propulsion Laboratory California Institute of Technology 1 10 th HITRAN Database Conference Cambridge MA June 22, 2008 Near Infrared CO 2 Spectral.
S&MPO linelist of 16 O 3 in the range 6000 – 7000 cm -1. M.-R. De Backer-Barilly #, Semen N. Mikhailenko*, Yurii Babikov*, Alain Campargue §, Samir Kassi.
PRESSURE BROADENING AND SHIFT COEFFICIENTS FOR THE BAND OF 12 C 16 O 2 NEAR 6348 cm -1 D. CHRIS BENNER and V MALATHY DEVI Department of Physics,
9th Biennal HITRAN Conference Harvard-Smithsonian Center for Astrophysics June 26–28, 2006 GLOBAL FREQUENCY AND INFRARED INTENSITY ANALYSIS OF 12 CH 4.
 ( ) 0+   ( ) 0–  4 1 Results at 2.5 microns 2 +( ) 1 II (
9th HITRAN Database & Atmospheric Spectroscopy Applications conferences Formaldehyde broadening coefficients Agnès Perrin Laboratoire Interuniversitaire.
Laser spectroscopic study of ozone in the 100←000 band for the SWIFT instrument M. Guinet, C. Janssen, D. Mondelain, C. Camy-Peyret LPMAA, CNRS- UPMC (France)
Jet Propulsion Laboratory California Institute of Technology 1 V-1 11 th HITRAN Conference, Cambridge, MA, June 16-18, 2010 The importance of being earnest.
Agnés Perrin Laboratoire Interuniversitaire des Systémes Atmosphériques (LISA), CNRS, Université Paris XII, Créteil C.Bray,
SPECTRAL LINE PARAMETERS FOR THE 9 BAND OF ETHANE Malathy Devi & Chris Benner, W&M Rinsland & Smith, NASA Langley Bob Sams & Tom Blake, PNNL Jean-Marie.
N 2 -broadened 13 CH 4 at 80 to 296 K Mary Ann H. Smith 1, Keeyoon Sung 2, Linda R. Brown 2, Timothy J. Crawford 2, Arlan W. Mantz 3, V. Malathy Devi 4,
LINE PARAMETERS OF WATER VAPOR IN THE NEAR- AND MID-INFRARED REGIONS DETERMINED USING TUNEABLE LASER SPECTROSCOPY Nofal IBRAHIM, Pascale CHELIN, Johannes.
Experimental Energy Levels of HD 18 O and D 2 18 O S.N. MIKHAILENKO, O.V. NAUMENKO, S.A. TASHKUN Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute.
First high resolution analysis of the 5 3 band of nitrogen dioxide (NO 2 ) near 1.3 µm Didier Mondelain 1, Agnès Perrin 2, Samir Kassi 1 & Alain Campargue.
DETERMINATION OF PRESSURE BROADENING AND SHIFTS FOR THE FIRST OVERTONE 2←0 OF HCL Brennan M. Coffey, Brian J. Drouin, Timothy J. Crawford Jet Propulsion.
Final Report Performance of a cryogenic multipath Herriott cell
HIGH-RESOLUTION ABSORPTION CROSS SECTIONS OF C 2 H 6 AND C 3 H 8 AT LOW TEMPERATURES ROBERT J. HARGREAVES DANIEL J. FROHMAN
Jet Propulsion Laboratory California Institute of Technology The College of William and MaryUniversity of Lethbridge.
Explore. Discover. Understand. AIR-BROADENED LINE WIDTHS AND SHIFTS IN THE ν 3 BAND OF 16 O 3 AT TEMPERATURES BETWEEN 160 AND 300 K M. A. H. SMITH and.
Molecular Spectroscopy Symposium June 2011 ROTATIONAL SPECTROSCOPY OF HD 18 O John C. Pearson, Shanshan Yu, Harshal Gupta, and Brian J. Drouin,
Spectral Line Parameters Including Temperature Dependences of N 2 - and Self-broadened Widths in the Region of the 9 band of C 2 H 6 using a Multispectrum.
Self- and Air-Broadening, Shifts, and Line Mixing in the ν 2 Band of CH 4 M. A. H. Smith 1, D. Chris Benner 2, V. Malathy Devi 2, and A. Predoi-Cross 3.
Self- and air-broadened line shape parameters in the band of 12 CH 4 : cm -1 V. Malathy Devi Department of Physics The College of William.
LINE PARAMETERS OF THE PH 3 PENTAD IN THE 4-5 µm REGION V. MALATHY DEVI and D. CHRIS BENNER College of William and Mary I.KLEINER CNRS/IPSL-Universites.
New H 2 16 O measurements of line intensities around 1300 cm -1 and 8800 cm - 1 Oudot Charlotte Groupe de Spectrométrie Moléculaire et Atmosphérique Reims,
Direct Sun measurements of NO 2 column abundances from Table Mountain, California: Retrieval method and intercomparison of low and high resolution spectrometers.
Emission Spectra of H 2 17 O and H 2 18 O from 320 to 2500 cm -1 Semen MIKHAILENKO 1, Georg MELLAU 2, and Vladimir TYUTEREV 3 1 Laboratory of Theoretical.
Methyl Bromide : Spectroscopic line parameters in the 7- and 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire.
High-resolution spectroscopy of nitrous acid (HONO) and its deuterated species (DONO) in the far- and mid-IR spectral regions A. Dehayem-Kamadjeu, J. Orphal,
Methyl Bromide : Spectroscopic line parameters in the 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire de Dynamique,
Temperature dependence of N 2 -, O 2 -, and air-broadened half- widths of water vapor transitions R. R. Gamache, B. K. Antony and P. R. Gamache Dept. of.
Evaluation of the Experimental and Theoretical Intensities of Water- Vapor Lines in the 2 µm Region Using Spectra from the Solar- Pointing FTS Iouli Gordon,
61th Ohio State University Symposium on Molecular Spectroscopy June 19–23, 2006 GLOBAL FREQUENCY AND INFRARED INTENSITY ANALYSIS OF 12 CH 4 LINES IN THE.
Precision Measurement of CO 2 Hotband Transition at 4.3  m Using a Hot Cell PEI-LING LUO, JYUN-YU TIAN, HSHAN-CHEN CHEN, Institute of Photonics Technologies,
. 1 MJ03 65 th Molecular Spectroscopy Symposium, Columbus, OH, June 2010 High Resolution Investigation of the Ethane Spectrum at 7 Micron (1430 cm -1 )
New 12 C 2 H 2 measurements using synchrotron SOLEIL David Jacquemart, Nelly Lacome, Olivier Piralli 66th OSU international symposium on molecular spectroscopy.
Valerie Klavans University of Maryland Conor Nixon University of Maryland, NASA GSFC Tilak Hewagama University of Maryland, NASA GSFC Donald E. Jennings.
Line list of HD 18 O rotation-vibration transitions for atmospheric applications Semen MIKHAILENKO, Olga NAUMENKO, and Sergei TASHKUN Laboratory of Theoretical.
The 1 and 6 bands of diiodo- methane CH 2 I 2 around 3.3  m studied by high-resolution FTS J. Orphal, N. Ibrahim Laboratoire Interuniversitaire des Systèmes.
Deuterium enriched water vapor Fourier Transform Spectroscopy: the cm -1 spectral region. (1) L. Daumont, (1) A. Jenouvrier, (2) S. Fally, (3)
BRIAN J. DROUIN, VIVIENNE PAYNE, FABIANO OYAFUSO, KEEYOON SUNG, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena,
A COMPREHENSIVE INTENSITY STUDY OF THE 4 TORSIONAL BAND OF ETHANE J. NOROOZ OLIAEE, N. Moazzen-Ahmadi Institute for Quantum Science and Technology Department.
A new spectroscopic observatory in Créteil to measure atmospheric trace gases in solar occultation geometry C. Viatte, P. Chelin, M. Eremenko, C. Keim,
Preliminary modeling of CH 3 D from 4000 to 4550 cm -1 A.V. Nikitin 1, L. R. Brown 2, K. Sung 2, M. Rey 3, Vl. G. Tyuterev 3, M. A. H. Smith 4, and A.W.
70 th International Symposium on Molecular Spectroscopy / Champaign-Urbana, Illinois, USA, June 22–26, 2015 LOW-TEMPERATURE COLLISIONAL BROADENING IN THE.
H 2 AND N 2 -BROADENED C 2 H 6 AND C 3 H 8 ABSORPTION CROSS SECTIONS ROBERT J. HARGREAVES a DOMINIQUE APPADOO b BRANT E. BILLINGHURST.
69th Meeting - Champaign-Urbana, Illinois, 2014 FE11 1/12 JPL Progress Report Keeyoon Sung, Geoffrey C. Toon, Linda R. Brown Jet Propulsion Laboratory,
SELF- AND CO 2 -BROADENED LINE SHAPE PARAMETERS FOR THE 2 AND 3 BANDS OF HDO V. MALATHY DEVI, D. CHRIS BENNER, Department of Physics, College of William.
TEMPERATURE DEPENDENCES OF AIR-BROADENING AND SHIFT PARAMETERS IN THE ν 3 BAND OF OZONE M. A. H. SMITH NASA Langley Research Center, Hampton, VA
Infrared Spectra of N 2 -broadened 13 CH 4 at Titan Atmospheric Temperatures Mary Ann H. Smith 1, Keeyoon Sung 2, Linda R. Brown 2, Timothy J. Crawford.
Line Positions and Intensities for the ν 12 Band of 13 C 12 CH 6 V. Malathy Devi 1, D. Chris Benner 1, Keeyoon Sung 2, Timothy J. Crawford 2, Arlan W.
FTS Studies Of The Isotopologues Of CO 2 Toward Creating A Complete And Highly Accurate Reference Standard Ben Elliott, Keeyoon Sung, Charles Miller JPL,
ROTATION-VIBRATIONAL ANALYSIS OF THE BANDS OF FORMALDEHYDE FALLING IN THE 3900 TO 5300 CM -1 REGION W.J. LAFFERTY Optical Technology Division NIST Gaithersburg,
1 70 th Symp. Mol. Spectrosc MJ14 13 CH 4 in the Octad Measurement and modeling of cold 13 CH 4 spectra from 2.1 to 2.7 µm Linda R. Brown 1, Andrei.
Additional Measurements and Analyses of H 2 17 O and H 2 18 O June 22-25, 2015 ISMS John. C. Pearson, Shanshan Yu, Adam Daly Jet Propulsion Laboratory,
EXPERIMENTAL LINE LISTS OF HOT METHANE Image credit: Mark Garlick MONDAY 22 nd JUNE 2015 ROBERT J. HARGREAVES MICHAEL DULICK PETER F.
Linhan Shen1, Thinh Bui1, John Eiler2, Mitchio Okumura1
INTERNATIONAL SYMPOSIUM ON MOLECULAR SPECTROSCOPY
V. MALATHY DEVI and D. CHRIS BENNER
Recent progress on Labfit: a robust multispectrum analysis program for fitting lineshapes including the HTP model and temperature dependence Matthew J.
Nofal IBRAHIM, Pascale CHELIN, Johannes ORPHAL
NH3 measurements in the far-IR
Experimental and Theoretical He-broadened Line Parameters of CO in the Fundamental Band Adriana Predoi-Cross1*, Hoimonti Rozario1, Koorosh Esteki1, Shamria.
A. M. Daly, B. J. Drouin, J. C. Pearson, K. Sung, L. R. Brown
Presentation transcript:

69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 1/13 JPL Progress Report Accurate line intensities for 16 O 12 C 17 O (627) in the 2.1 µm region (the OCO-2 strong band) David Jacquemart 1,2, Keeyoon Sung 3, Linda R. Brown 3, Arlan W. Mantz 4, Mary Ann H. Smith 5 1 UPMC Univ Paris 06, Laboratoire de Dynamique, Interactions et Réactivité, Paris, France. 2 CNRS, UMR 7075, Laboratoire de Dynamique, Interactions et Réactivité, Paris, France. 3 Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA 4 Dept. of Physics, Astronomy and Geophysics, Connecticut College, New London, CT 5 Science Directorate, NASA Langley Research Center, Hampton, VA

69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 2/13 JPL CO 2 minor isotopologues Intensity measurements and uncertainties  Status of measurement uncertainties (for strong bands)  How to improve OCO[627] line strength measurement uncertainty the limiting factor: Molecular abundance in the sample How to be sure of molecular abundances in our sample? Option#1 – Use manufacturer’s atomic abundances Option#2 – Perform independent sample characterization - WE DID. 1) Obtained a 17 O-enhanced CO 2 sample 2) Characterized the sample by mass spectrometry. SpeciesPosition (cm -1 )Intensity (%)Measurement availableABSCO list OCO[626] < 1 Benner et al. (unpublished) OCO[636] ~ 1 OCO[628] – 3Toth et al.[2008] ~ 5Borkov et al.[2013] OCO[627] 0.001~ 5Lyulin et al. [2012] Borkov et al. [2013] Toth et al. (HITRAN) 10 – 15Karlovets et al.[2013]

69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 3/13 JPL Mass spectrometry: Notations and terms  Atomic isotope ratio The letter, R, is reserved for atomic fractions R13 = [ 13 C]/[ 12 C]; R17 = [ 17 O]/[ 16 O]; R18 = [ 18 O]/[ 16 O]  Depletion factor δ (‰) = (R sample – R std )/R std × 1000 International Standards for C, PDB (Pee Dee Belemnite) For O, V-SMOW (Vienna Standard Mean Ocean Water) e.g.) δ 18 O = 0 for SMOW by definition e.g.) Earth’s tropospheric O 2 shows δ 18 O = ‰.  Construction of normal sample of CO 2 [CO 2 ]= ([ 12 C]+[ 13 C]) × ([ 16 O]+[ 17 O]+[ 18 O]) × ([ 16 O]+[ 17 O]+[ 18 O]) = [626]×(1+R13) × (1+R17+R18) 2  Two sets of mass spec measurement (to correct fractionation effect, measured a reference and a target sample) Reference CO 2 gas: δ 13 C = –10.44 PDB, δ 18 O = V-SMOW Target sample bottle: 17 O-enhanced ( 17 O atom > 45%)

69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 4/13 JPL Mass spectrum data analysis: A tomic abundance  (Stable) Isotope-Ratio Mass Spectrometer (IRMS) What are measured quantities?  M values: mole fraction of CO 2 isotopologues by mass/charge M-values factors Components M45/44 = ([636] + [627]) / [626] = R13 + 2×R17 M46/44 = ([628] + [637] + [727]) / [626] = 2×R18 + R ×R13×R17 M47/44 = ([728] + [638] + [737]) / [626] = 2×R17×R18 + R13×R ×R13×R18 M48/44 = ([828] + [738]) / [626] = R ×R13×R17×R18 M49/44 = [838] / [626] = R13×R18 2  Determine atomic abundance Find R to minimize χ 2 = ∑ i {( M i meas - M i cal )/δM i meas } 2 RR Meas (uncalibrated) Corr.Fac, ξ (R True /R Meas ) R Meas. (calibrated) isotopesTotal Atom (%) R121 1[ 12 C]98.94(±0.33) R [ 13 C] 1.06(±0.33) R161 1 [ 16 O]39.34(±0.55) R [ 17 O]51.26(±0.33) R [ 18 O] 9.39(±0.49) Note: Agreed to the vendor’s specificatoin: 17 O-enhanced ( 17 O atom > 45%).

69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 5/13 JPL Calculation of Molecular abundances  Gas mixture at equilibrium: Sample purity = 100 % (given) Used statistical law to calculate molecular abundances  Molecular isotopologue abundances Iso#Isotopologues%Abundances $ %(δA/A) & 4[ 12 C 16 O 17 O][627]39.91 (±0.82) 2.1 8[ 12 C 17 O 17 O][727]26.00 (±0.34) [ 12 C 16 O 16 O][626]15.32 (±0.42) 2.7 [ 12 C 17 O 18 O][728] 9.53 (±0.56) 5.9 3[ 12 C 16 O 18 O][628] 7.31 (±0.48) 6.6 7[ 12 C 18 O 18 O][828] 0.87 (±0.09) [ 13 C 16 O 17 O][637] 0.43 (±0.14) 32.6 [ 13 C 17 O 17 O][737] 0.28 (±0.09) [ 13 C 16 O 16 O][636] 0.16 (±0.06) [ 13 C 17 O 18 O][738] 0.10 (±0.04) 40 5[ 13 C 16 O 18 O][638] 0.08 (±0.03) [ 13 C 18 O 18 O][838] 0.01 (±0.01)100 Total CO 2 100% $ Uncertainties in the parenthesis are relative to the total sample. & Uncertainties are relative to the individual isotopologue abundance.

69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 6/13 JPL New FT-IR spectra with Herriot cell Arlan Mantz Bruker 125HR at JPL Herriott cell

69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 7/13 JPL Instrumental set-up and experimental details Interferometer (Bruker IFS-125HR) IR sourceTungsten lamp (50 W) Beam splitterCaF 2 Resolution cm -1 (unapodized) Aperture (diameter) 1.3 mm Focal length418 mm Optical filter range Filter#A: 4500 – 6500 cm -1 Filter#B: 5800 – 6800 cm -1 DetectorInSb (LN 2 cooled) FTS pressure< hPa Gas absorption cell Herriott cell (Talk: TI07) BodyOFHC copper Base path (m)0.337 Path length (m) (6) Cell windowCaF 2 (wedged) Vacuum box window CaF 2 (wedged) Pure CO 2 spectrum Run # Opt. Filter rangeTotal sample Pressure (cm -1 )(Torr)(Atm) 03A B B A A B B A A A A A CO 2 and CO mixture spectrum rangeP(CO 2 )P(CO) (cm -1 )(Torr) 15 none ~ 0.924~ 0.1

69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 8/13 JPL L = m P = 0.5 – 98 Torr T = 296 K Resnl = cm -1 This work: 2 µm region Residual H 2 O HCl [626]; [627]; [628]; [727] Sample spectrum capturing various types of CO 2 isotopologues Future work

69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 9/13 JPL Multispectrum fitting - Required a multispectrum fitting procedure - Employed the program by Jacquemart et al. (2002)

69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 10/13 JPL Choice of line-shape profile: Rautian (87) cm (62) cm -1 /(molec.cm -2 ) (22) cm -1 /atm (67) (49) cm -1 /(molec.cm -2 ) (17) cm -1 /atm  Observed 0.85% on the line intensity: 3 % on line half width Voigt Rautian Position: Intensity: Broadening:

69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 11/13 JPL Vibrational transition dipole moment squared |µ 0 | 2 and Herman Wallis factors The average (obs-calc) values of for the line intensities are given in% with 1SD after the ± sign. For |R 0 | 2, A 1 and A 2 the SD comes from the fit of these parameters.

69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 12/13 JPL Summary Table Generation of complete line list - ongoing Band † Number of measurements Spectral range in cm -1 Band intensity ‡ (cm -1 /molecule.cm -2 ) – × – × – × – × – × – × – × – × – × – × – × – × – × – × – × ‡ The band intensity has been estimated through the sum of the calculated line intensities at 296K in cm -1 /(molecule.cm -2 ) for pure 16 O 12 C 17 O.

69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 13/13 JPL Thank you for your attention We also thank Chip Miller for providing the 17 O-enriched CO 2 sample, Max Coleman for the mass spec measurements of the CO 2 sample, Tim Crawford for the technical assistance on the data acquisition with a FT-IR. Acknowledgements Research described in this talk was performed at UPMC/CNRS (France), Connecticut College, NASA Langley Research Center and the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration.