Quantum equations of motion in BF theory with sources N. Ilieva A. Alekseev.

Slides:



Advertisements
Similar presentations
Lalgèbre des symétries quantiques dOcneanu et la classification des systèms conformes à 2D Gil Schieber Directeurs : R. Coquereaux R. Amorim (J. A. Mignaco)
Advertisements

 Symmetries and vanishing couplings in string-derived low-energy effective field theory              Tatsuo Kobayashi 1.Introduction.
The Topological G 2 String Asad Naqvi (University of Amsterdam) (in progress) with Jan de Boer and Assaf Shomer hep-th/0506nnn.
A journey inside planar pure QED CP3 lunch meeting By Bruno Bertrand November 19 th 2004.
A New Perspective on Covariant Canonical Gravity Andrew Randono Center for Relativity University of Texas at Austin.
Prolog Line, surface & volume integrals in n-D space → Exterior forms Time evolution of such integrals → Lie derivatives Dynamics with constraints → Frobenius.
Algebra Recap Solve the following equations (i) 3x + 7 = x (ii) 3x + 1 = 5x – 13 (iii) 3(5x – 2) = 4(3x + 6) (iv) 3(2x + 1) = 2x + 11 (v) 2(x + 2)
Casimir Effect of Proca Fields Quantum Field Theory Under the Influence of External Conditions Teo Lee Peng University of Nottingham Malaysia Campus 18.
A view on the problems of Quantum Gravity T. P. Shestakova Department of Theoretical and Computational Physics Southern Federal University (former Rostov.
Mellin Representation of Conformal Correlation Functions in the AdS/CFT G.A. Kerimov Trakya University Edirne, Turkey ` 7th Mathematical Physics Meeting.
Area Metric Reality Constraint in Classical and Quantum General Relativity Area Metric Reality Constraint in Classical and Quantum General Relativity Suresh.
Spin Chain in Gauge Theory and Holography Yong-Shi Wu Department of Physics, University of Utah, Center for Advanced Study, Tsinghua University, and Shanghai.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture III.
I.1 ii.2 iii.3 iv.4 1+1=. i.1 ii.2 iii.3 iv.4 1+1=
I.1 ii.2 iii.3 iv.4 1+1=. i.1 ii.2 iii.3 iv.4 1+1=
A new continuum limit for the one matrix model
Teleportation. 2 bits Teleportation BELL MEASUREMENT.
School of Physics & Astronomy FACULTY OF MATHEMATICAL & PHYSICAL SCIENCE Parallel Transport & Entanglement Mark Williamson 1, Vlatko Vedral 1 and William.
Topological reach of field-theoretical topological quantum computation Mario Rasetti Politecnico di Torino & ISI Foundation.
Beyond Feynman Diagrams Lecture 2 Lance Dixon Academic Training Lectures CERN April 24-26, 2013.
Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables.
PHYS 1111 Mechanics, Waves, & Thermodynamics  Prerequisites: MATH 1090 (Trigonometry)**** or MATH 1113, also familiarity with college Algebra, Geometry,
Classical Waves Calculus/Differential Equations Refresher.
Germán Sierra Instituto de Física Teórica CSIC-UAM, Madrid Talk at the 4Th GIQ Mini-workshop February 2011.
Integrable hierarchies of
Belief Propagation and Loop Series on Planar Graphs Volodya Chernyak, Misha Chertkov and Razvan Teodorescu Department of Chemistry, Wayne State University.
Photon angular momentum and geometric gauge Margaret Hawton, Lakehead University Thunder Bay, Ontario, Canada William Baylis, U. of Windsor, Canada.
The 2 nd Joint Kyoto-NTU High Energy Theory Workshop Welcome!
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
XII International School-seminar “The Actual Problems of Microworld Physics” July 22 – August 2, 2013, Gomel, Belarus Vacuum polarization effects in the.
1 UNIVERSAL MODEL OF GR An attempt to systematize the study of models in GR.
N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures, III Fall Term 2004.
Twistors and Perturbative QCD Yosuke Imamura The Univ. of Tokyo String Theory and Quantum Field Theory Aug.19-23, 2005 at YITP tree-level Yang-Mills 1.
Yuya Sasai (Yukawa Institute for Theoretical Physics, Kyoto University) in collaboration with N. Sasakura (YITP) JHEP 0906, 013 (2009) [arXiv: ]
A NONCOMMUTATIVE CLOSED FRIEDMAN WORLD MODEL. 1.Introduction 2.Structure of the model 3.Closed Friedman universe – Geometry and matter 4.Singularities.
Do Now: Evaluate: 3AB. Algebra II 3.7: Evaluate Determinants HW: p.207 (4-14 even) Test : Friday, 12/6.
D-term Dynamical Supersymmetry Breaking K. Fujiwara and, H.I. and M. Sakaguchi arXiv: hep-th/ , P. T. P. 113 arXiv: hep-th/ , N. P. B 723 H.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
1 Topological Quantum Phenomena and Gauge Theories Kyoto University, YITP, Masatoshi SATO.
Noncommutative Quantum Mechanics Catarina Bastos IBERICOS, Madrid 16th-17th April 2009 C. Bastos, O. Bertolami, N. Dias and J. Prata, J. Math. Phys. 49.
N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures, II Fall Term 2004.
Wednesday, Feb. 28, 2007PHYS 5326, Spring 2007 Jae Yu 1 PHYS 5326 – Lecture #9 Wednesday, Feb. 28, 2007 Dr. Jae Yu 1.Quantum Electro-dynamics (QED) 2.Local.
Hadron to Quark Phase Transition in the Global Color Symmetry Model of QCD Yu-xin Liu Department of Physics, Peking University Collaborators: Guo H., Gao.
The Geometry of Moduli Space and Trace Anomalies. A.Schwimmer (with J.Gomis,P-S.Nazgoul,Z.Komargodski, N.Seiberg,S.Theisen)
Loops05 1 Emergence of Spin Foam in Feynman graphs Aristide Baratin ENS Lyon (France) and Perimeter Institute (Canada) with Laurent Freidel Potsdam, October.
In-medium QCD forces for HQs at high T Yukinao Akamatsu Nagoya University, KMI Y.Akamatsu, A.Rothkopf, PRD85(2012), (arXiv: [hep-ph] ) Y.Akamatsu,
Wednesday, Mar. 5, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #13 Wednesday, Mar. 5, 2003 Dr. Jae Yu Local Gauge Invariance and Introduction.
GASYUKU2002,Kyoto-U @ KAGA 1 Computing Feynman Graphs in MSFT Isao Kishimoto (Univ. of Tokyo) based on Collaboration with I.Bars and Y.Matsuo [ hep-th/ ]
Quantum cosmology with nontrivial topologies T. Vargas Center for Mathematics and Theoretical Physics National Central University.
1 Effective Constraints of Loop Quantum Gravity Mikhail Kagan Institute for Gravitational Physics and Geometry, Pennsylvania State University in collaboration.
Markus Quandt Quark Confinement and the Hadron Spectrum St. Petersburg September 9,2014 M. Quandt (Uni Tübingen) A Covariant Variation Principle Confinement.
Lieb-Liniger 模型と anholonomy 阪市大数研: 米澤 信拓 首都大学東京: 田中 篤司 高知工科大学: 全 卓樹.
Torsional heterotic geometries Katrin Becker ``14th Itzykson Meeting'' IPHT, Saclay, June 19, 2009.
Holomorphic Anomaly Mediation Yu Nakayama (Caltech) arXiv: and to appear.
Non-Commutative Einstein Equations and Seiberg–Witten Map Paolo Aschieri,Elisabetta Di Grezia, Giampiero Esposito, INFN, Turin and Naples. Friedmann Seminar,
Monday, Jan. 31, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #4 Monday, Jan. 31, 2005 Dr. Jae Yu 1.Lab Frame and Center of Mass Frame 2.Relativistic.
Gravity effects to the Vacuum Bubbles Based on PRD74, (2006), PRD75, (2007), PRD77, (2008), arXiv: [hep-th] & works in preparation.
Semiclassical correlation functions in holography Kostya Zarembo “Strings, Gauge Theory and the LHC”, Copenhagen, K.Z.,
An Introduction to Matrix Algebra Math 2240 Appalachian State University Dr. Ginn.
Quantum nonlocality based on finite-speed causal influences
Hyun Seok Yang Center for Quantum Spacetime Sogang University
A new large N reduction for Chern-Simons theory on S3
Tomislav Prokopec, ITP Utrecht University
Solving Equations 3x+7 –7 13 –7 =.
Transverse Axial Vector and Vector Anomalies in U(1) Gauge Theories
Graviton Propagators in Supergravity and Noncommutative Gauge Theory
Włodzimierz Piechocki, Theory Division, INS, Warsaw
Cosmological Scaling Solutions
in collaboration with G. Ishiki, S. Shimasaki
Chapter IV Gauge Field Lecture 2 Books Recommended:
Presentation transcript:

Quantum equations of motion in BF theory with sources N. Ilieva A. Alekseev

Quantum Fields in BF Theory M. Mateev Memorial Conference, Sofia, IV.2011 Nevena Ilieva Introduction Two-dimensional BF theory gauge theory  star-product  Kontsevich approach  Torossian connection (correl. of B-exponentials)  star-product  Kontsevich approach  Torossian connection (correl. of B-exponentials)  A. Cattaneo, J. Felder, Commun. Math. Phys. 212 (2000) 591–611  M. Kontsevich, Lett. Math. Phys. 66 (2003) 157–216  C. Torossian, J. Lie Theory 12 (2001)  A. Cattaneo, J. Felder, Commun. Math. Phys. 212 (2000) 591–611  M. Kontsevich, Lett. Math. Phys. 66 (2003) 157–216  C. Torossian, J. Lie Theory 12 (2001) (topological) Poisson  -model  VP of gauge theory  Sources at (z 1,…, z n )  Expectations of quantum A and B fields; quantum eqs.  regularization at (z 1,…, z n )  VP of gauge theory  Sources at (z 1,…, z n )  Expectations of quantum A and B fields; quantum eqs.  regularization at (z 1,…, z n ) A = ( A reg (z 1,), …, A reg (z n ) ) connection on the space of configs. of points (z 1,…, z n )

Quantum Fields in BF Theory M. Mateev Memorial Conference, Sofia, IV.2011 Nevena Ilieva Classical action and equations of motion G connected Lie group; G tr(ab) inv scalar product on G A gauge field on the G -bundle P over M n B G -valued n-2 form  E. Witten, CMP 117 (1988) 353; 118 (1988) 411; 121 (1989) 351  A.S. Schwarz, Lett. Math. Phys. 2 (1978) 247–252  D. Birmingham et al., Phys. Rep. 209 (1991)  E. Witten, CMP 117 (1988) 353; 118 (1988) 411; 121 (1989) 351  A.S. Schwarz, Lett. Math. Phys. 2 (1978) 247–252  D. Birmingham et al., Phys. Rep. 209 (1991)

Quantum Fields in BF Theory M. Mateev Memorial Conference, Sofia, IV.2011 Nevena Ilieva Classical action and equations of motion Propagator  M ; gauge choice Triple vertex  f abc Connected Feynman diagrams:

Quantum Fields in BF Theory M. Mateev Memorial Conference, Sofia, IV.2011 Nevena Ilieva BF theory with sources Partition function / theory with sources Correlation function / theory without sources  O : A(u), B(u)  not gauge-inv observables  source term breaks the gauge inv of the action

Quantum Fields in BF Theory M. Mateev Memorial Conference, Sofia, IV.2011 Nevena Ilieva Feynman diagrams Short trees [T(l=1)]

Quantum Fields in BF Theory M. Mateev Memorial Conference, Sofia, IV.2011 Nevena Ilieva Quantum equations of motion B - [ A,B ] Coincides with the classical eqn.

Quantum Fields in BF Theory M. Mateev Memorial Conference, Sofia, IV.2011 Nevena Ilieva Quantum equations of motion z1z1 zizi znzn u z1z1 zizi znzn u A reg - ½ [ A,A ] A sing

Quantum Fields in BF Theory M. Mateev Memorial Conference, Sofia, IV.2011 Nevena Ilieva Quantum flat connection Dependence of the B -field correlators K η (z 1,…, z n ) on (z 1,…, z n ) Singularity → regularization by a new splitting no singularity at u = z i

Quantum Fields in BF Theory M. Mateev Memorial Conference, Sofia, IV.2011 Nevena Ilieva Quantum flat connection Quantum equation of motion for B field Naïve expectation for K η (z 1,…, z n ) equation ( d z being the de Rham diff.) Contributing Feynman graphs

Quantum Fields in BF Theory M. Mateev Memorial Conference, Sofia, IV.2011 Nevena Ilieva Quantum flat connection d - the total de Rham differential for all variables z 1,…, z n Consider functions α i (η 1,…, η n )  G, i = 1,…, n Lie algebra 1-forms (a 1,…, a n ) as components of a connection A (a 1,…, a n ), with values in this LA

Quantum Fields in BF Theory M. Mateev Memorial Conference, Sofia, IV.2011 Nevena Ilieva Quantum flat connection j  i : A (u) → A (j) reg u zjzj does not contribute u = z j Similarly for the differential of gauge field A  holomorphic components  anti-holomorphic components  mixed components ( F ij corresponds to { z i, z j } )

Quantum Fields in BF Theory M. Mateev Memorial Conference, Sofia, IV.2011 Nevena Ilieva Quantum flat connection The curvatute F of A vanishes. ( F ij ) k, k = 1,…, n (i) Components with k  i, j vanish identically (ii) (iii) The only non-vanishing component is ( F ii ) i with

Quantum Fields in BF Theory M. Mateev Memorial Conference, Sofia, IV.2011 Nevena Ilieva Quantum flat connection vanish source term covariant-derivative term extra z i dependence due to the tree root

Quantum Fields in BF Theory M. Mateev Memorial Conference, Sofia, IV.2011 Nevena Ilieva Quantum flat connection

Quantum Fields in BF Theory M. Mateev Memorial Conference, Sofia, IV.2011 Nevena Ilieva Outlook Torossian connection Knizhnik-Zamolodchikov connection / WZW irreps of G play the role of T(l=1) propagator d ln (z i -z j )/2πi  KZ connection as eqn on the wave funtion of the CS TFT with n time-like Wilson lines (corr. primary fields)  holonomy matrices of the flat connection A KZ → braiding of Wilson lines  3D TFT with TC as a wave function eqn (?)  non-local observables → insertions of exp(tr ηB(z) ) in 2D theory

Quantum Fields in BF Theory

M. Mateev Memorial Conference, Sofia, IV.2011 Nevena Ilieva Feynman diagrams