Topological phase and quantum criptography with spin-orbit entanglement of the photon Universidade Federal Fluminense Instituto de Física - Niterói – RJ.

Slides:



Advertisements
Similar presentations
Quantum Logic and Quantum gates with Photons
Advertisements

Entanglement-enhanced communication over a correlated-noise channel
1 Separability and entanglement: what symmetries and geometry can say Helena Braga, Simone Souza and Salomon S. Mizrahi Departamento de Física, CCET, Universidade.
Photodetachment microscopy in a magnetic field Christophe Blondel Laboratoire Aimé-Cotton, Centre national de la recherche scientifique, université Paris-
Collinear interaction of photons with orbital angular momentum Apurv Chaitanya N Photonics science Laboratory, PRL.
Ilja Gerhardt QUANTUM OPTICS CQT GROUP Ilja Gerhardt, Matthew P. Peloso, Caleb Ho, Antía Lamas-Linares and Christian Kurtsiefer Entanglement-based Free.
Durham University – Atomic & Molecular Physics group
1 Multiphoton Entanglement Eli Megidish Quantum Optics Seminar,2010.
The quantum signature of chaos through the dynamics of entanglement in classically regular and chaotic systems Lock Yue Chew and Ning Ning Chung Division.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Introduction to Quantum Cryptography Dr. Janusz Kowalik IEEE talk Seattle, February 9,2005.
Gate robustness: How much noise will ruin a quantum gate? Aram Harrow and Michael Nielsen, quant-ph/0212???
Higher Order Gaussian Beams Jennifer L. Nielsen B.S. In progress – University of Missouri-KC Modern Optics and Optical Materials REU Department of Physics.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Future Challenges in Long-Distance Quantum Communication Jian-Wei Pan Hefei National Laboratory for Physical Sciences at Microscale, USTC and Physikalisches.
Deterministic teleportation of electrons in a quantum dot nanostructure Deics III, 28 February 2006 Richard de Visser David DiVincenzo (IBM, Yorktown Heights)
Quantum Cryptography Prafulla Basavaraja CS 265 – Spring 2005.
Paraty, Quantum Information School, August 2007 Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Quantum Cryptography.
Shashi Prabhakar, S. Gangi Reddy, A. Aadhi, Ashok Kumar, Chithrabhanu P., G. K. Samanta and R. P. Singh Physical Research Laboratory, Ahmedabad
School of Physics & Astronomy FACULTY OF MATHEMATICAL & PHYSICAL SCIENCE Parallel Transport & Entanglement Mark Williamson 1, Vlatko Vedral 1 and William.
Experimental Quantum Teleportation Quantum systems for Information Technology Kambiz Behfar Phani Kumar.
Experiments With Entangled Photons Paulo Henrique Souto Ribeiro Instituto de Física - UFRJ Summer School of Optics Concépcion January/2010.
Gagan Deep Singh GTBIT (IT) August 29,2009.
QUANTUM ENTANGLEMENT AND IMPLICATIONS IN INFORMATION PROCESSING: Quantum TELEPORTATION K. Mangala Sunder Department of Chemistry IIT Madras.
Generating and harnessing photonic entanglement
Where, Nageswaran Rajendran and Dieter Suter, Institutes for Physics, University of Dortmund, Dortmund, Germany Geometric Phases for Mixed States.
Photon angular momentum and geometric gauge Margaret Hawton, Lakehead University Thunder Bay, Ontario, Canada William Baylis, U. of Windsor, Canada.
Weak Values in Quantum Measurement Theory - Concepts and Applications - Yutaka Shikano 07M01099 Department of Physics, Tokyo Institute of Technology “Master.
Entangling without Entanglement T. Cubitt, F. Verstraete, W. Dür, J. I. Cirac “Separable State can be used to Distribute Entanglement” (to appear in PRL.
Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.
QUANTUM COMPUTING an introduction Jean V. Bellissard Georgia Institute of Technology & Institut Universitaire de France.
Security of practical quantum cryptography with heralded single photon sources Mikołaj Lasota 1, Rafał Demkowicz-Dobrzański 2, Konrad Banaszek 2 1 Nicolaus.
QCMC’06 1 Joan Vaccaro Centre for Quantum Dynamics, Centre for Quantum Computer Technology Griffith University Brisbane Group theoretic formulation of.
Jian-Wei Pan Decoherence-free sub-space and quantum error-rejection Jian-Wei Pan Lecture Note 7.
Christine Muschik and J. Ignacio Cirac Entanglement generated by Dissipation Max-Planck-Institut für Quantenoptik Hanna Krauter, Kasper Jensen, Jonas Meyer.
IWEPNM 2007, Kirchberg Coworkers Principles of Quantum Computing Michael Mehring Physikalisches Institut, Univ. Stuttgart, Germany A.Heidebrecht, S. Krämer,
Quantum information: From foundations to experiments Second Lecture Luiz Davidovich Instituto de Física Universidade Federal do Rio de Janeiro BRAZIL.
Quantum Cryptography Zelam Ngo, David McGrogan. Motivation Age of Information Information is valuable Protecting that Information.
Information Processing by Single Particle Hybrid Entangled States Archan S. Majumdar S. N. Bose National Centre for Basic Sciences Kolkata, India Collaborators:
Quantum Dense coding and Quantum Teleportation
Bell Measurements and Teleportation. Overview Entanglement Bell states and Bell measurements Limitations on Bell measurements using linear devices Teleportation.
Quantum Optics II – Cozumel, Dec. 6-9, 2004
1 entanglement-quantum teleportation entanglement-quantum teleportation entanglement (what is it?) quantum teleportation (intuitive & mathematical) ‘ quantum.
Copenhagen interpretation Entanglement - qubits 2 quantum coins 2 spins ( spin “up” or spin “down”) Entangled state many qubits: Entangled state:
Quantum Entanglement and Distillation in Information Processing Shao-Ming Fei
Multiparticle Entangled States of the W- class, their Properties and Applications A. Rodichkina, A. Basharov, V. Gorbachev Laboratory for Quantum Information.
Coherent cooling: a momentum state quantum computer Tim Freegarde Dipartimento di Fisica, Università di Trento, Povo, ItalyQuantum Optics & Laser.
Gang Shu  Basic concepts  QC with Optical Driven Excitens  Spin-based QDQC with Optical Methods  Conclusions.
Atomic entangled states with BEC SFB Coherent Control €U TMR A. Sorensen L. M. Duan P. Zoller J.I.C. (Nature, February 2001) KIAS, November 2001.
Applications of Quantum Cryptography – QKD CS551/851CRyptographyApplicationsBistro Mike McNett 6 April 2004 Paper: Chip Elliott, David Pearson, and Gregory.
Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications.
Quantum Optics II – Cozumel December 2004 Quantum key distribution with polarized coherent states Quantum Optics Group Instituto de Física “Gleb Wataghin”
Quantum Cryptography Antonio Acín
Topological Insulators
Universität Karlsruhe Phys. Rev. Lett. 97, (2006)
Sources, Memories, Detectors Ryan Camacho, Curtis Broadbent, Michael Pack, Praveen Vudya Setu, Greg Armstrong, Benjamin Dixon and John Howell University.
Presented By, Mohammad Anees SSE, Mukka. Contents Cryptography Photon Polarization Quantum Key Distribution BB84 Protocol Security of Quantum Cryptography.
Purdue University Spring 2016 Prof. Yong P. Chen Lecture 18 (3/24/2016) Slide Introduction to Quantum Photonics.
Optical Vortices and Electric Quadrupole transitions James Bounds.
Quantum Geometric Phase
By Joshua Barrow and Andrew Mogan
COMPSCI 290.2: Computer Security
Quantum Teleportation
Quantum Teleportation
Quantum Cryptography Alok.T.J EC 11.
Quantum Information with Continuous Variables
Geometric Phase in composite systems
COT 6200 Quantum Computing Fall 2010
Fig. 2 Experimental setup.
Presentation transcript:

Topological phase and quantum criptography with spin-orbit entanglement of the photon Universidade Federal Fluminense Instituto de Física - Niterói – RJ - Brasil Antonio Zelaquett Khoury Financial Support: CNPq - CAPES – FAPERJ Financial Support: CNPq - CAPES – FAPERJ INSTITUTO DO MILÊNIO DE INFORMAÇÃO QUÂNTICA

Outline Geom. phase for a spin ½ in a magnetic field Geometric quantum computation The Pancharatnam phase Beams carrying OAM Topological phase for entangled states BB84 QKD without a shared reference frame Conclusions

Geometric phase of a spin 1/2 in a magnetic field

Spin 1/2 in a time dependent magnetic field Spin 1/2 in a time dependent magnetic field BERRY PHASE

Geometric quantum computation

Geometric conditional phase gate Conditional phase gate J.A. Jones, V. Vedral, A. Ekert, G. Castagnoll, NATURE V.403, 869 (2000) L.-M. Duan, J.I. Cirac, P.Zoller SCIENCE V.292, 1695 (2001)

The Pancharatnam phase

Pancharatnam phase S. Pancharatnam, Proc. Indian Acad. Sci. Sect. A, V.44, 247 (1956) Collected Works of S. Pancharatnam, Oxford Univ. Press, London (1975).

Beams carrying orbital angular momentum

Gauss-Laguerre beams carrying OAM (Paraxial Wave Equation) Angular momentum Hermite-Gauss (HG) Rectangular Laguerre-Gauss (LG) Cylindrical

Poincaré representation for beams carrying OAM Poincaré representation of first order Gaussian modes Cylindrical lenses at 45 o Astigmatic mode converter

Geometric phase from astigmatic mode conversion E.J. Galvez, P.R. Crawford, H.I. Sztul, M.J. Pysher, P.J. Haglin, R.E. Williams, Physical Review Letters V.90, (2003)

Topological phase for entangled states C. E. Rodrigues de Souza, J. A. O. Huguenin and A. Z. Khoury IF-UFF P. Milman LMPQ – Jussieu - France

Geometric representation for two-qubit states TWO QUBITS  Two Bloch spheres?? Only for product states!!! Bloch sphere (or Poincaré sphere) ONE QUBIT 

Geometric representation for two-qubit PURE states Bloch ball SO(3) sphere (opposite points identified) Two-qubit PURE STATES  (Concurrence) Maximally entangled state  Bloch ball colapses to a point!!!! P. Milman and R. Mosseri, Phys. Rev. Lett. 90, ( 2003 ). P. Milman, Phys. Rev. A 73, (2006).

Topological phase for maximally entangled states Cyclic evolutions preserveing maximal entanglement (“Closed” trajectories)  Two homotopy classes: 0-type trajectories  π-type trajectories  SO(3) sphere

Separable polarization-OAM modes

Nonseparable polarization-OAM modes Geometric representation on the SO(3) sphere

Nonseparable mode preparation Holographic preparation of the LG modes PBS

Interferometric measurement ’  1 (θ = 0 0 ) / 4’  1 (θ = 90 0 ) 4141 CCD θ = 45 0 θ = θ = 0 0 θ = 0 0, , 45 0, , 90 0

Experimental results Unseparable mode Separable mode θ=0 0 θ= θ=45 0 θ= θ=90 0 θ=0 0 θ= θ=45 0 θ= θ=90 0

Theoretical expressions Unseparable mode Separable mode

Calculated images Unseparable mode Separable mode

Partial separability and concurrence Partially separable mode Interference pattern (θ=45 0 ) CONCURRENCE

BB84 Quantum key distribution without a shared reference frame C. E. Rodrigues de Souza, C. V. S. Borges, J. A. O. Huguenin and A. Z. Khoury IF-UFF L. Aolita and S. P. Walborn IF-UFRJ

The BB84 protocol ALICE Bennett and Brassard 1984 Polarizers HV +/- HV +/- Polarizers BOB H- 45 o 45 o V Photons

Result HV +/-HV+/- HVBasis Result HV+/-HV +/-HV+/- Basis     Alice and Bob check their basis, but not their results ! ALICE BOB

Spin-orbit entanglement Logic basis +/- Logic basis 0/1 Invariant under rotations ! ! ! ! L. Aolita and S. P. Walborn PRL 98, (2007)

BB84 without frame alignment BASIS,,,, Photons,,, Robust against alignment noise ! ! ! ! ALICEBOB

Procedure sketch BOB CNOT X X R(φ) ALICE R(θ)

Experimental setup

Experimental results Bob’s detector 1 State sent by Alice Bob’s detector 0 Rotation of Alice’s setup Bob’s detector 1 Alice sends 1 Bob’s detector 0, Bob`s detection basis:

Conclusions

Conclusions Spin-orbit entanglement Topological phase for spin-orbit transformations Potential applications to conditional gates Quantum criptography without frame alignment