THz Transistors, sub-mm-wave ICs, mm-wave Systems 805-893-3244, 805-893-5705 fax 20th Annual Workshop on Interconnections within High.

Slides:



Advertisements
Similar presentations
Development of THz Transistors & ( GHz) Sub-mm-Wave ICs , fax The 11th International Symposium on.
Advertisements

Metal Oxide Semiconductor Field Effect Transistors
An 8-GHz Continuous-Time  ADC in an InP-based DHBT Technology Sundararajan Krishnan*, Dennis Scott, Miguel Urteaga, Zachary Griffith, Yun Wei, Mattias.
High performance 110 nm InGaAs/InP DHBTs in dry-etched in-situ refractory emitter contact technology Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
1 InGaAs/InP DHBTs demonstrating simultaneous f t / f max ~ 460/850 GHz in a refractory emitter process Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
Y. Wei, M. Urteaga, Z. Griffith, D. Scott, S. Xie, V. Paidi, N. Parthasarathy, M. Rodwell. Department of Electrical and Computer Engineering, University.
Device Research Conference 2011
Characteristics of Submicron HBTs in the GHz Band M. Urteaga, S. Krishnan, D. Scott, T. Mathew, Y. Wei, M. Dahlstrom, S. Lee, M. Rodwell. Department.
1 Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh Mishra ECE and Materials Departments University of California, Santa Barbara, CA 2011 Device Research.
DRC mS/  m In 0.53 Ga 0.47 As MOSFET with 5 nm channel and self-aligned epitaxial raised source/drain Uttam Singisetti*, Mark A. Wistey, Greg.
Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara.
1 InGaAs/InP DHBTs in a planarized, etch-back technology for base contacts Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell.
Device Research Conference 2006 Erik Lind, Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University of California,
40 GHz MMIC Power Amplifier in InP DHBT Technology Y.Wei, S.Krishnan, M.Urteaga, Z.Griffith, D.Scott, V.Paidi, N.Parthasarathy, M.Rodwell Department of.
Interconnects in GHz Integrated Circuits
Chart 1 A 3-Stage Shunt-Feedback Op-Amp having 19.2dB Gain, 54.1dBm OIP3 (2GHz), and 252 OIP3/P DC Ratio Zach Griffith, M. Urteaga, R. Pierson, P. Rowell,
48.8mW Multi-cell InP HBT Amplifier with on-wafer power combining at 220GHz Thomas Reed, Mark Rodwell University of California, Santa Barbara Zach Griffith,
ELCT564 Spring /17/20151ELCT564 Diodes, Transistors and Mixers.
Sub-mm-Wave Technologies: Systems, ICs, THz Transistors Asia-Pacific Microwave Conference, November 8th, Seoul Mark.
C. KOO Millimeter-wave Integrated Systems Lab. RF Power Transistors For Mobile Applications 전기공학부 구찬회.
Scaling of High Frequency III-V Transistors , fax Short Course, 2009 Conference on InP and Related Materials,
InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes , fax 2003.
1999 IEEE Symposium on Indium Phosphide & Related Materials
Single-stage G-band HBT Amplifier with 6.3 dB Gain at 175 GHz M. Urteaga, D. Scott, T. Mathew, S. Krishnan, Y. Wei, M. Rodwell. Department of Electrical.
87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy.
280 GHz f T InP DHBT with 1.2  m 2 base-emitter junction area in MBE Regrown-Emitter Technology Yun Wei*, Dennis W. Scott, Yingda Dong, Arthur C. Gossard,
GHZ Wireless: Transistors, ICs, and System Design Plenary, 2014 German Microwave Conference, March, Aachen.
100+ GHz Transistor Electronics: Present and Projected Capabilities , fax 2010 IEEE International Topical.
Frequency Limits of Bipolar Integrated Circuits , fax Mark Rodwell University of California, Santa Barbara.
Nanometer InP Electron Devices for VLSI and THz Applications
III-V HBT and (MOS) HEMT scaling
Rodwell et al, UCSB: Keynote talk, 2000 IEEE Bipolar/BICMOS Circuits and Technology Meeting, Minneapolis, September Submicron Scaling of III-V HBTs for.
M. Dahlström, Z. Griffith, M. Urteaga, M.J.W. Rodwell University of California, Santa Barbara, CA, USA X.-M. Fang, D. Lubyshev, Y. Wu, J.M. Fastenau and.
W-band InP/InGaAs/InP DHBT MMIC Power Amplifiers Yun Wei, Sangmin Lee, Sundararajan Krishnan, Mattias Dahlström, Miguel Urteaga, Mark Rodwell Department.
V. Paidi, Z. Griffith, Y. Wei, M. Dahlstrom,
Chart 1 A 204.8GHz Static Divide-by-8 Frequency Divider in 250nm InP HBT Zach Griffith, Miguel Urteaga, Richard Pierson, Petra Rowell, Mark Rodwell*, and.
Prospects for High-Aspect-Ratio FinFETs in Low-Power Logic Mark Rodwell, Doron Elias University of California, Santa Barbara 3rd Berkeley Symposium on.
2010 IEEE Device Research Conference, June 21-23, Notre Dame, Indiana
Ultra high speed heterojunction bipolar transistor technology Mark Rodwell University of California, Santa Barbara ,
Indium Phosphide Bipolar Integrated Circuits: 40 GHz and beyond Mark Rodwell University of California, Santa Barbara ,
III-V HBT device physics: what to include in future compact models , fax Mark Rodwell University of California,
InP HBT Digital ICs and MMICs in the GHz band , fax Mark Rodwell University of California, Santa.
III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
Device Research Conference, 2005 Zach Griffith and Mark Rodwell Department of Electrical and Computer Engineering University of California, Santa Barbara,
High speed (207 GHz f  ), Low Thermal Resistance, High Current Density Metamorphic InP/InGaAs/InP DHBTs grown on a GaAs Substrate Y.M. Kim, M. Dahlstrǒm,
Frequency Limits of InP-based Integrated Circuits , fax Collaborators (III-V MOS) A. Gossard, S. Stemmer,
Urteaga et al, 2001 Device Research Conference, June, Notre Dame, Illinois Characteristics of Submicron HBTs in the GHz Band M. Urteaga, S. Krishnan,
Technology Development for InGaAs/InP-channel MOSFETs
Ultrathin InAs-Channel MOSFETs on Si Substrates Cheng-Ying Huang 1, Xinyu Bao 2, Zhiyuan Ye 2, Sanghoon Lee 1, Hanwei Chiang 1, Haoran Li 1, Varistha Chobpattana.
Transistor and Circuit Design for GHz ICs , fax Mark Rodwell University of California, Santa Barbara.
University of California, Santa Barbara
50-500GHz Wireless Technologies: Transistors, ICs, and Systems
Indium Phosphide and Related Material Conference 2006 Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
Developing Bipolar Transistors for Sub-mm-Wave Amplifiers and Next-Generation (300 GHz) Digital Circuits ,
III-V CMOS: Device Design & Process Flows , fax ESSDERC Workshop on Germanium and III-V MOS Technology, Sept.
THz Bipolar Transistor Circuits: Technical Feasibility, Technology Development, Integrated Circuit Results ,
185 GHz Monolithic Amplifier in InGaAs/InAlAs Transferred-Substrate HBT Technology M. Urteaga, D. Scott, T. Mathew, S. Krishnan, Y. Wei, M. Rodwell. Department.
Device Research Conference 2007 Erik Lind, Adam M. Crook, Zach Griffith, and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
IEEE Bipolar/BiCMOS Circuits and Technology Meeting Zach Griffith, Mattias Dahlström, and Mark J.W. Rodwell Department of Electrical and Computer Engineering.
Process Technologies For Sub-100-nm InP HBTs & InGaAs MOSFETs M. A. Wistey*, U. Singisetti, G. J. Burek, B. J. Thibeault, A. Baraskar, E. Lobisser, V.
On the Feasibility of Few-THz Bipolar Transistors , fax *Now at University of Texas, Austin Invited Paper,
Indium Phosphide and Related Materials
Submicron Transferred-Substrate Heterojunction Bipolar Transistors M Rodwell, Y Betser,Q Lee, D Mensa, J Guthrie, S Jaganathan, T Mathew, P Krishnan, S.
Uttam Singisetti. , Mark A. Wistey, Greg J. Burek, Ashish K
ISCS 2008 InGaAs MOSFET with self-aligned Source/Drain by MBE regrowth Uttam Singisetti*, Mark A. Wistey, Greg J. Burek, Erdem Arkun, Ashish K. Baraskar,
Ultra Wideband DHBTs using a Graded Carbon-Doped InGaAs Base Mattias Dahlström, Miguel Urteaga,Sundararajan Krishnan, Navin Parthasarathy, Mark Rodwell.
A Self-Aligned Epitaxial Regrowth Process for Sub-100-nm III-V FETs A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
A High-Dynamic-Range W-band
Lower Limits To Specific Contact Resistivity
High-linearity W-band Amplifiers in 130 nm InP HBT Technology
Presentation transcript:

THz Transistors, sub-mm-wave ICs, mm-wave Systems , fax 20th Annual Workshop on Interconnections within High Speed Digital Systems, Santa Fe, New Mexico, 3 – 6 May 2009 Mark Rodwell University of California, Santa Barbara

The End (of Moore's Law) is Near (?) It's a great time to be working on electronics ! Things to work on: InP transistors: extend to 3-4 THz→ GHz & low-THz ICs GaN HEMTs: powerful transmitters from GHz Si MOSFETs: scale them past 16 nm VLSI transistors: subvert Boltzmann→ solve power crisis III-V MOSFETs: help keep VLSI scaling (maybe) mm-wave VLSI: massively complex ICs to re-invent radio Our focus today: THz transistors - how and why

Why THz Transistors ?

Why Build THz Transistors ? THz amplifiers→ THz radios → imaging, sensing, communications precision analog design at microwave frequencies → high-performance receivers 500 GHz digital logic → fiber optics Higher-Resolution Microwave ADCs, DACs, DDSs

What Would You Do With a THz Transistor ? 640 Gb/s ETDM optical fiber links GHz imaging systems mm-wave communication links

At High Frequencies The Atmosphere Is Opaque Mark Rosker IEEE IMS 2007

What Else Would You Do With a THz Transistor ? precision, high-performance analog microwave circuits higher-resolution microwave ADCs, DACs, DDSs

How to Make THz Transistors

Simple Device Physics: Resistance Good approximation for contact widths less than 2 transfer lengths. bulk resistancecontact resistance -perpendicular contact resistance - parallel

Simple Device Physics: Depletion Layers capacitancetransit timespace-charge limited current

Simple Device Physics: Thermal Resistance Exact Carslaw & Jaeger 1959 Long, Narrow Stripe HBT Emitter, FET Gate Square ( L by L ) IC on heat sink

Simple Device Physics: Fringing Capacitance wiring capacitanceFET parasitic capacitances VLSI power-delay limits FET scaling constraints

Frequency Limits and Scaling Laws of (most) Electron Devices To double bandwidth, reduce thicknesses 2:1Improve contacts 4:1 reduce width 4:1, keep constant length increase current density 4:1 PIN photodiode

parameterchange collector depletion layer thicknessdecrease 2:1 base thicknessdecrease 1.414:1 emitter junction widthdecrease 4:1 collector junction widthdecrease 4:1 emitter contact resistancedecrease 4:1 current densityincrease 4:1 base contact resistivitydecrease 4:1 Changes required to double transistor bandwidth: Linewidths scale as the inverse square of bandwidth because thermal constraints dominate. Bipolar Transistor Scaling Laws

parameterchange gate lengthdecrease 2:1 gate dielectric capacitance densityincrease 2:1 gate dielectric equivalent thicknessdecrease 2:1 channel electron densityincrease 2:1 source & drain contact resistancedecrease 4:1 current density (mA/  m) increase 2:1 Changes required to double transistor bandwidth: Linewidths scale as the inverse of bandwidth because fringing capacitance does not scale. FET Scaling Laws

Thermal Resistance Scaling : Transistor, Substrate, Package

Probable best solution: Thermal Vias ~500 nm below InP subcollector...over full active IC area.

Electron Plasma Resonance: Not a Dominant Limit

THz & nm Transistors: it's all about the interfaces Metal-semiconductor interfaces (Ohmic contacts): very low resistivity Dielectric-semiconductor interfaces (Gate dielectrics): very high capacitance density Transistor & IC thermal resistivity.

THz Bipolar Transistors

InP Bipolar Transistor Scaling Roadmap emitter nm width  m 2 access  base nm contact width,  m 2 contact  collector nm thick, mA/  m 2 current density V, breakdown f  GHz f max GHz power amplifiers GHz digital 2:1 divider GHz industryuniversity →industry university appears feasible maybe

InP DHBTs: September 2008

512 nm InP DHBT Production DDS IC: 4500 HBTs20-40 GHz op-amps 500 nm mesa HBT 150 GHz M/S latches175 GHz amplifiers Laboratory Technology Teledyne / BAETeledyne / UCSB UCSBUCSB / Teledyne / GCS 500 nm sidewall HBT f  = 405 GHz f max = 392 GHz V br, ceo = 4 V Teledyne 20 GHz clock dBm 2 GHz with 1 W dissipation ( Teledyne ) Z. Griffith M. Urteaga P. Rowell D. Pierson B. Brar V. Paidi

256 nm Generation InP DHBT 150 nm thick collector 70 nm thick collector 60 nm thick collector 200 GHz master-slave latch design Z. Griffith, E. Lind J. Hacker, M. Jones 324 GHz Amplifier

324 GHz Medium Power Amplifiers in 256 nm HBT ICs designed by Jon Hacker / Teledyne Teledyne 256 nm process flow- Hacker et al, 2008 IEEE MTT-S ~2 mW saturated output power

InP Bipolar Transistor Scaling Roadmap emitter nm width  m 2 access  base nm contact width,  m 2 contact  collector nm thick, mA/  m 2 current density V, breakdown f  GHz f max GHz power amplifiers GHz digital 2:1 divider GHz industryuniversity →industry university appears feasible maybe

Conventional ex-situ contacts are a mess textbook contact with surface oxide Interface barrier → resistance Further intermixing during high-current operation → degradation with metal penetration THz transistor bandwidths: very low-resistivity contacts are required

Ohmic Contacts Good Enough for 3 THz Transistors 64 nm (2.0 THz) HBT needs ~ 2  - μm 2 contact resistivities 32 nm (2.8 THz) HBT needs ~ 1  - μm 2 Contacts to N-InGaAs*: Mo MBE in-situ 2.2 (+/- 0.5)  - μm 2 TiW ex-situ ~2.2  - μm 2 Contacts to P-InGaAs: Mo MBE in-situ below 2.5  - μm 2 Pd/...ex-situ ~1 (+/- ?)  - μm 2 *measured emitter resistance remains higher than that of contacts.

Process Must Change Greatly for 128 / 64 / 32 nm Nodes Undercutting of emitter ends control undercut → thinner emitter thinner emitter → thinner base metal thinner base metal → excess base metal resistance {101}A planes: fast {111}A planes: slow

128 / 64 nm process: where we are going Developing scalable self-aligned base process 2  -  m 2 resistivity base contacts - in-situ, in MBE 0.3  -  m 2 resistivity emitter contacts - in-situ, in MBE target ~2000 GHz device

THz Field-Effect Transistors (THz HEMTs)

parameterchange gate lengthdecrease 2:1 gate dielectric capacitance densityincrease 2:1 gate dielectric equivalent thicknessdecrease 2:1 channel electron densityincrease 2:1 source & drain contact resistancedecrease 4:1 current density (mA/  m) increase 2:1 Changes required to double transistor bandwidth: InGaAs HEMTs are best for mm-wave low-noise receivers......but there are difficulties in improving them further. FET Scaling Laws

Why HEMTs are Hard to Improve III-V MOSFETs do not face these scaling challenges SourceDrain Gate K Shinohara 1 st challenge with HEMTs: reducing access resistance gate barrier lies under S/D contacts → resistance low electron density under gate recess→ limits current 2 nd challenge with HEMTs: low gate barrier high tunneling currents with thin barrier high emission currents with high electron density channel gate barrier

III-V MOSFETs for VLSI→ Also Helps HEMT Development What is it ? MOSFET with an InGaAs channel What are the problems ? low electron effective mass→ constraints on scaling ! must grow high-K on InGaAs, must grow InGaAs on Si Why do it ? low electron effective mass→ higher electron velocity more current, less charge at a given insulator thickness & gate length very low access resistance

III-V MOSFETs in Development Wistey Singisetti Burek Lee. Rodwell Gossard Mo S/D metal with N+ InAs underneath side of gate top of gate InAs regrowth gate Mo S/D metal with N+ InAs underneath

III-V MOSFETs as a Scaling Path for THz HEMTs Why ? Much lower access resistance in S/D regions Higher gate barrier→ higher feasible electron density in channel Higher gate barrier→ gate dielectric can be made thinner Estimated Performance (?) 2 THz cutoff frequencies at 32 nm gate length

Applications of THz III-V Transistors

What Else Would You Do With a THz Transistor ? precision, high-performance analog microwave circuits higher-resolution microwave ADCs, DACs, DDSs

input power, dBm output power, dBm linear response 2-tone intermodulation increasing feedback mm-wave Op-Amps for Linear Microwave Amplification Reduce distortion with strong negative feedback R. Eden DARPA / UCSB / Teledyne FLARE: Griffith & Urteaga measured GHz bandwidth measured 54 dBm 2 GHz new designs in fabrication simulated 56 dBm 2 GHz 300 GHz / 4 V InP HBT

What Would You Do With a THz Transistor ? 640 Gb/s ETDM optical fiber links GHz imaging systems mm-wave communication links

670 GHz Transceiver Simulations in 128 nm InP HBT transmitter exciter receiver LNA: 9.5 dB Fmin at 670 GHz 3-layer thin-film THz interconnects thick-substrate--> high-Q TMIC thin -> high-density digital 670 GHz (128 nm HBT) PA: 9.1 dBm Pout at 670 GHz VCO: -50 dBc (1 100 Hz offset at 620 GHz (phase 1) Dynamic divider: novel design, simulates to 950 GHz Mixer: 10.4 dB noise figure 11.9 dB gain

What Would You Do With a THz Transistor ? 640 Gb/s ETDM optical fiber links GHz imaging systems mm-wave communication links

150 GHz carrier, 100 Gbs/s QPSK radio: 30 cm antennas, 10 dBm power, fair weather→ 1 km range 150 & 250 GHz Bands for 100 Gb/s Radio ? GHz, GHz: enough bandwidth for 100 Gb/s QPSK Wiltse, 1997 IEEE APS-Symposium, sea level 4 km 9 km 150 GHz band: Expect ~10-20 dB/km attenuation for rain 300 GHz band: expect ~20-30 db/km from 90% humidity

Interconnects within high-speed ICs

+V 0V kzkz Microstrip mode Substrate modes +V 0V CPW mode 0V CPW has parasitic modes, coupling from poor ground plane integrity kzkz Microstrip has high via inductance, has mode coupling unless substrate is thin. We prefer (credit to NTT) thin-film microstrip wiring, inverted is best for complex ICs -V0V+V 0V0V Slot mode ground straps suppress slot mode, but multiple ground breaks in complex ICs produce ground return inductance ground vias suppress microstrip mode, wafer thinning suppresses substrate modes M. Urteaga, Z. Griffith, S. Krishnan

mm-wave MIMO: → Wireless Links at 100's of Gb/s

mm-wave (60-80 GHz) MIMO → wireless at 40+ Gb/s rates ? 70 GHz, 1 km, 16 elements, 2 polarizations, 3.6 x 3.6 meter array, 2.5 GBaud QPSK → 160 Gb/s digital radio ?

mm-wave MIMO: 2-channel prototype, 60 GHz, 40 meters

mm-wave MIMO: 4-channel prototype, 60 GHz, Indoor 4 x 622 Mb/s 60 GHz carrier

VSLI for mm-wave & sub-mm-wave systems

Billions of 700-GHz Transistors→ Imaging & Arrays 65 nm CMOS: ~5 dB 200 GHz 22 nm will be much faster yet. What can you do with a few billion 700-GHz transistors ? Build Transmitter / Receiver Arrays 100's or 1000's of transmitters or receivers...on < 1 cm 2 IC area...operating at GHz. 150 GHz 8 dB amplifier IBM: Janagathan, Pekarik UCSB: Seo

3-stage 250GHz Amplifier Design Fcenter= 260GHz Gain= 9.9dB P DC = 15mW IBM: Pekarik, Jaganathan UCSB: M. Seo Designs in Fabrication 32 nm CMOS

millimeter-wave spectrum: new solutions needed mm-wave Bands → Lots of bandwidth short wavelength→ weak signal → short range highly directional antenna → strong signal→ long range narrow beam→ must be aimed → no good for mobile monolithic beam steering arrays→ strong signal, steerable 32 x 32 array → dB increased SNR→ vastly increased range → multi-Gigabit mobile communications

Billions of 700-GHz Transistors→ Imaging & Arrays Arrays for point-point radio links: Arrays for (sub)-mm-wave imaging : Arrays for Spatial-Division-Multiplexing Networks:

THz Transistors

Why Build THz Transistors ? THz amplifiers→ THz radios → imaging, sensing, communications precision analog design at microwave frequencies → high-performance receivers 500 GHz digital logic → fiber optics Higher-Resolution Microwave ADCs, DACs, DDSs

THz Integrated Circuits Device scaling (Moore's Law) is not yet over. Challenges in scaling: contacts, dielectrics, heat Multi-THz transistors: for systems at very high frequencies for better performance at moderate frequencies Vast #s of THz transistors complex systems new applications.... imaging, radio, and more Scaling→ multi-THz transistors.

end

MIMO Link: a Subsampled Multi-Beam Phased Array array places nulls at interfering transmitters