Systems of Equations: Elimination, Part II Unit 7, Lesson 5b.

Slides:



Advertisements
Similar presentations
Solving Systems of three equations with three variables Using substitution or elimination.
Advertisements

3-2: Solving Linear Systems
Solving a System of Equations by ELIMINATION. Elimination Solving systems by Elimination: 1.Line up like terms in standard form x + y = # (you may have.
Drill Solve the linear system by substitution. 1.y = 6x – 11 -2x – 3y = x + y = 6 -5x – y = 21.
Do Now Pass out calculators. Solve the following system by graphing: Graph paper is in the back. 5x + 2y = 9 x + y = -3 Solve the following system by using.
3.5 Solving systems of equations in 3 variables
Algebra II w/ trig. Substitution Method: 1. Solve an equation for x or y 2. Substitute your result from step 1 into the other equation and solve for the.
5.3 Solving Systems using Elimination
Lesson 6-3 – Solving Systems Using Elimination
Do Now 1/13/12  In your notebook, list the possible ways to solve a linear system. Then solve the following systems. 5x + 6y = 50 -x + 6y = 26 -8y + 6x.
Integrated Math 2 Lesson #7 Systems of Equations - Elimination Mrs. Goodman.
9.5 Multiplication with the Addition- or-Subtraction Method Purpose: To use multiplication on linear equations before you add or subtract. Homework: p.
Goal: Solve a system of linear equations in two variables by the linear combination method.
Solving Systems Using Elimination (For help, go to Lesson 7-2.) Solve each system using substitution. 1.y = 4x – 32.y + 5x = 4 3. y = –2x + 2 y = 2x +
Solving a System of Equations in Two Variables By Elimination Chapter 8.3.
Solving Systems Using Elimination
SOLVING SYSTEMS ALGEBRAICALLY SECTION 3-2. SOLVING BY SUBSTITUTION 1) 3x + 4y = 12 STEP 1 : SOLVE ONE EQUATION FOR ONE OF THE VARIABLES 2) 2x + y = 10.
3.6 Systems with Three Variables 1.Solving Three-Variable Systems by Elimination 2.Solving Three-Variable Systems by Substitution.
Solving Systems of Equations: The Elimination Method Solving Systems of Equations: The Elimination Method Solving Systems of Equations: The Elimination.
Solving Linear Systems By Elimination. Solving Linear Systems There are three methods for solving a system of equations: By Graphing them and looking.
Notes – 2/13 Addition Method of solving a System of Equations Also called the Elimination Method.
Elimination Method: Solve the linear system. -8x + 3y=12 8x - 9y=12.
7.4. 5x + 2y = 16 5x + 2y = 16 3x – 4y = 20 3x – 4y = 20 In this linear system neither variable can be eliminated by adding the equations. In this linear.
Do Now (3x + y) – (2x + y) 4(2x + 3y) – (8x – y)
SOLVING SYSTEMS USING ELIMINATION 6-3. Solve the linear system using elimination. 5x – 6y = -32 3x + 6y = 48 (2, 7)
Multiply one equation, then add
Lesson 1.  Example 1. Use either elimination or the substitution method to solve each system of equations.  3x -2y = 7 & 2x +5y = 9  A. Using substitution.
Solving Systems by Elimination 5.4 NOTES, DATE ____________.
3-2 Solving Systems Algebraically Hubarth Algebra II.
Systems of Equations. OBJECTIVES To understand what a system of equations is. Be able to solve a system of equations from graphing, substitution, or elimination.
Task 2.6 Solving Systems of Equations. Solving Systems using Substitution  Solve using Substitution if one variable is isolated!!!  Substitute the isolated.
Lesson 9-5 Multiplication with the Addition /Subtraction Method Objective: To use multiplication with the addition or subtraction method to solve systems.
Solving Systems of Equations Using the Elimination Method.
3-2: Solving Linear Systems. Solving Linear Systems There are two methods of solving a system of equations algebraically: Elimination Substitution.
3-2: Solving Systems of Equations using Elimination
WARM-UP. SYSTEMS OF EQUATIONS: ELIMINATION 1)Rewrite each equation in standard form, eliminating fraction coefficients. 2)If necessary, multiply one.
Elimination Method - Systems. Elimination Method  With the elimination method, you create like terms that add to zero.
Solving a System of Equations by ELIMINATION. Elimination Solving systems by Elimination: 1.Line up like terms in standard form x + y = # (you may have.
Warm Up Find the solution to linear system using the substitution method. 1) 2x = 82) x = 3y - 11 x + y = 2 2x – 5y = 33 x + y = 2 2x – 5y = 33.
Solve Linear Systems By Multiplying First
10.3 Solving Linear Systems
Solving Systems of Equations using Elimination
Solve Systems of Equations by Elimination
Solving Systems of Linear Equations in 3 Variables.
3-2: Solving Systems of Equations using Substitution
3-2: Solving Linear Systems
6-3 Solving Systems Using Elimination
Solving Systems Using Elimination
REVIEW: Solving Linear Systems by Elimination
Solve Systems of Equations by Elimination
3.5 Solving systems of equations in 3 variables
3-2: Solving Systems of Equations using Substitution
Solving Systems of Equations using Substitution
Lesson 7.1 How do you solve systems of linear equations by graphing?
Solve Linear Equations by Elimination
Objectives Solve systems of linear equations in two variables by elimination. Compare and choose an appropriate method for solving systems of linear equations.
3-2: Solving Linear Systems
Warm Up #30: Solve by substitution
Simultaneous Equations starter
7.3 Notes.
Solving a System of Equations in Two Variables by the Addition Method
Solving Systems of Linear Equations in 3 Variables.
Solve the linear system.
3-2: Solving Linear Systems
Example 2B: Solving Linear Systems by Elimination
Solving Two Step Algebraic Equations
Solving literal equations
3-2: Solving Linear Systems
Solving Systems by ELIMINATION
The Substitution Method
Presentation transcript:

Systems of Equations: Elimination, Part II Unit 7, Lesson 5b

Type #2: Multiply one equation to force a variable cancel Solve by elimination.3x + 6y = –6 –5x – 2y = –14 Step 1: Eliminate one variable. Add the equations to eliminate y. 3x + 6y = –6 –15x – 6y = –42 –12x – 0 = –48 To prepare to eliminate y, multiply the second equation by 3. 3x + 6y = –6 3(–5x – 2y = –14) Step 2: Solve for x. –12x = 48 x = 4

Type #2: Multiply one equation to force a variable cancel Solve by elimination.3x + 6y = –6 –5x – 2y = –14 Step 3: Solve for the eliminated variable using either of the original equations. 3x + 6y = –6 3(4) + 6y = – y = –6 6y = –18 y = –3 The solution is (4, –3).

x + 2y = 11 –3x + y = –5 Solve the system by elimination. x + 2y = 11 –2(–3x + y = –5) x + 2y = 11 +(6x –2y = +10) 7x + 0 = 21 7x = 21 x = 3 Another Example: x + 2y = y = 11 –3 2y = 8 y = 4 (3, 4)(3, 4)

Solve the system by elimination. 3x + 2y = 6 –x + y = –2 3x + 2y = 6 3(–x + y = –2) 3x + 2y = 6 +(–3x + 3y = –6) 0 + 5y = 0 5y = 0 y = 0 One More Example: –x + y = –2 –x + 3(0) = –2 –x + 0 = –2 –x = –2 (2, 0)(2, 0) x = 2

Type #3:Multiply both equations by values that force a variable to cancel Solve by elimination.3x + 5y = 10 5x + 7y = 10 Step 1: Eliminate one variable. Subtract the equations to eliminate x. 15x + 25y = 50 15x + 21y = y = 20 To prepare to eliminate x, multiply one equation by 5 and the other equation by 3. 5(3x + 5y = 10) 3(5x + 7y = 10) Step 2: Solve for y. 4y = 20 y = 5

Type #3:Multiply both equations by values that force a variable to cancel Solve by elimination.3x + 5y = 10 5x + 7y = 10 Step 3: Solve for the eliminated variable x using either of the original equations. 3x + 5y = 10 3x + 5(5) = 10 3x + 25 = 10 3x = –15 x = –5 The solution is (–5, 5).

–5x + 2y = 32 2x + 3y = 10 Solve the system by elimination. 2(–5x + 2y = 32) 5(2x + 3y = 10) –10x + 4y = 64 +(10x + 15y = 50) 19y = 114 y = 6 Another Example: 2x + 3y = 10 2x + 3(6) = 10 –18 2x = –8 2x + 18 = 10 x = –4 (–4, 6)

Solve the system by elimination. 2x + 5y = 26 –3x – 4y = –25 3(2x + 5y = 26) +(2)(–3x – 4y = –25) 6x + 15y = 78 +(–6x – 8y = –50) y = y = 28 One More Example: 2x + 5y = 26 2x + 5(4) = 26 (3, 4)(3, 4) x = 3 2x + 20 = 26 –20 2X = 6