Session Objectives To revisit the Audit Risk Model and Materiality concepts; To explain the Theory of Sampling as applied to audit To Explain the link.

Slides:



Advertisements
Similar presentations
Audit Sampling: An Overview and Application to Tests of Controls
Advertisements

©2010 Prentice Hall Business Publishing, Auditing 13/e, Arens//Elder/Beasley Audit Sampling for Tests of Controls and Substantive Tests of Transactions.
Learning Objectives LO6 Develop a simple audit program for an account balance, considering the influences of risk and tolerable misstatement. a. Specify.
[Hayes, Dassen, Schilder and Wallage, Principles of Auditing An Introduction to ISAs, edition 2.1] © Pearson Education Limited 2007 Slide 10A.1 Audit Sampling.
Audit Sampling By David N. Ricchiute
S11: Risk Based Audit Approach. Session Objectives  To define audit risks and establish the relationship between materiality and audit risk  To discuss.
Audit Sampling for Tests of Controls and Substantive Tests of Transactions Chapter 15.
Chapter 9 Audit Sampling: An Application to Substantive Tests of Account Balances McGraw-Hill/Irwin ©2008 The McGraw-Hill Companies, All Rights Reserved.
Chapter 13: Audit Sampling Spring Overview of Sampling.
SAMPLING. THIRD STANDARD OF FIELD WORK (AU ) “SUFFICIENT COMPETENT EVIDENTIAL MATTER IS TO BE OBTAINED THROUGH INSPECTION, OBSERVATION, INQUIRIES,
©2003 Prentice Hall Business Publishing, Auditing and Assurance Services 9/e, Arens/Elder/Beasley Audit Sampling for Tests of Controls and Substantive.
S S (5.1) RTI, JAIPUR1 STATISTICAL SAMPLING Presented By RTI, JAIPUR.
Audit Sampling: An Overview and Application to Tests of Controls
BA 427 – Assurance and Attestation Services
INTRODUCTION TO NONSTATISTICAL SAMPLING FOR AUDITORS
Management of Risks in Audit RISK ANALYSIS AND STATISTICAL SAMPLING IN AUDIT.
Chapter 17 Audit Sampling for Tests of Details of Balances.
Financial Audit Autonomous Bodies Internal Control and Risk Assessment Session Internal Control and Risk Assessment.
Copyright © 2007 Pearson Education Canada 1 Chapter 12: Audit Sampling Concepts.
Chapter 9 Audit Sampling: An Application to Substantive Tests of Account Balances McGraw-Hill/IrwinCopyright © 2012 by The McGraw-Hill Companies, Inc.
Slide 9-1 © The McGraw-Hill Companies, Inc., 2006 Audit Sampling.
Chapter 10 Audit Sampling.
Chapter 9 Audit Sampling – Part b.
Audit Sampling 1.
©2006 Prentice Hall Business Publishing, Auditing 11/e, Arens/Beasley/Elder Audit Sampling for Tests of Details of Balances Chapter 17.
Introduction to Statistical Sampling and Sampling Designs in Audit.
Audit Sampling Pertemuan Matakuliah: A0294/Audit SI Lanjutan Tahun: 2009.
Chapter 9 Audit Sampling: An Application to Substantive Tests of Account Balances McGraw-Hill/Irwin Copyright © 2008 by The McGraw-Hill Companies, Inc.
©2003 Prentice Hall Business Publishing, Auditing and Assurance Services 9/e, Arens/Elder/Beasley Audit Sampling for Tests of Details of Balances.
©2010 Prentice Hall Business Publishing, Auditing 13/e, Arens//Elder/Beasley Audit Sampling for Tests of Details of Balances Chapter 17.
©2012 Pearson Education, Auditing 14/e, Arens/Elder/Beasley Audit Sampling for Tests of Details of Balances Chapter 17.
Charteredaccountants.com.au/training Fundamentals of Auditing in 2007 Chartered Accountants Audit Conference ASA 530 – Audit Sampling and Other Means of.
Chapter 9 Audit Sampling: An Application to Substantive Tests of Account Balances This presentation focuses (like my course) on MUS. It omits the effect.
S7: Audit Planning. Session Objectives To explain the need for planning To explain the need for planning To outline the essential elements of planning.
Audit Planning. Session Objectives To explain the need for planning To outline the essential elements of planning process To finalise the audit approach.
Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
Audit Sampling: An Overview and Application to Tests of Controls
Audit Sampling: An Overview and Application to Tests of Controls
Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 9-1 Chapter Nine Audit Sampling: An Application to Substantive.
Chapter 09 Audit Sampling McGraw-Hill/IrwinCopyright © 2014 by The McGraw-Hill Companies, Inc. All rights reserved.
Chapter 9 Audit Sampling: An Application to Substantive Tests of Account Balances McGraw-Hill/IrwinCopyright © 2012 by The McGraw-Hill Companies, Inc.
Chapter 8 Audit Sampling: An Overview and Application to Tests of Controls Copyright © 2014 McGraw-Hill Education. All rights reserved. No reproduction.
Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 8-1 Chapter Eight Audit Sampling: An Overview and Application.
Auditing: The Art and Science of Assurance Engagements Chapter 13: Audit Sampling Concepts Copyright © 2011 Pearson Canada Inc.
OVERVIEW THE AUDIT PROCESS Overview of the Audit Process.
RTI, Nagpur1 Day 2- Session IV Internal control and risk measurement.
9-1 Copyright © 2016 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
Specialized Audit Tools: Sampling and Generalized Audit Software
CHAPTER 8 MATERIALITY AND RISK. MATERIALITY THE MAGNITUDE OF AN OMISSION OR MISSTATEMENT…THAT MAKES IT PROBABLE THAT THE JUDGMENT OF A REASONABLE PERSON.
Chapter 9 Audit Sampling – Part a.
©2005 Prentice Hall Business Publishing, Auditing and Assurance Services 10/e, Arens/Elder/Beasley Audit Sampling for Tests of Controls and Substantive.
©2012 Prentice Hall Business Publishing, Auditing 14/e, Arens/Elder/Beasley Audit Sampling for Tests of Details of Balances Chapter 17.
Audit Sampling: An Overview and Application
Audit Sampling: An Overview and Application to Tests of Controls
©2005 by the McGraw-Hill Companies, Inc. All rights reserved.
PLANNING, MATERIALITY AND ASSESSING THE RISK OF MISSTATEMENT
Chapter 9 Audit Sampling: An Application to Substantive Tests of Account Balances McGraw-Hill/Irwin ©2008 The McGraw-Hill Companies, All Rights Reserved.
Developing the Overall Audit Plan and Audit Program
Chapter 9 Audit Sampling 1.
Chapter 11 Audit sampling
Audit Sampling for Tests of Details of Balances
Audit Sampling for Tests of Details of Balances
Chapter 9 Audit Sampling: An Application to Substantive Tests of Account Balances McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc.
Modern Auditing: Assurance Services and the Integrity of Financial Reporting, 8th Edition William C. Boynton California Polytechnic State University at.
STATISTICAL TOOLS FOR AUDITING
Auditing & Assurance Services, 6e
Substantive Test Sampling
AUDIT TESTS.
Presentation transcript:

Management of Risks in Audit RISK ANALYSIS AND STATISTICAL SAMPLING IN AUDIT

Session Objectives To revisit the Audit Risk Model and Materiality concepts; To explain the Theory of Sampling as applied to audit To Explain the link between risk assessment and sampling

The Risk Model Theory and Assumptions Control Risk (CR) Risk that the internal control systems in an organization will not be able to detect an error or material misstatement Inherent Risk (IR) Susceptibility of a class of transactions to material misstatement or errors Risk of Occurrence of Error Detection Risk (DR) Risk that auditor’s substantive tests will not be able to detect a material misstatement in the audited transactions

Overall Audit Risk (OAR) Assurance required from audit procedures the maximum risk the auditor is willing to accept OAR = CR x IR x DR OAR defined by the audit institution A constant pre-determined quantity Objective of the auditor assess inherent and control risks in the entity design and perform compliance and substantive tests to provide sufficient assurance that the product of the risks identified ≤ overall audit risk solve the equation for DR assessing IR and CR

Detection Risk (DR) DR is actually a combination of: DR = AP X TD Analytical procedures risk (AP): Risk that analytical procedures will fail to detect material errors Tests of detail risk (TD): Risk that detailed test procedures will fail to detect the material errors DR = AP X TD OAR = IR X CR X AP X TD Auditor exercises professional judgment in assessing IR, CR and AP and solves the equation for TD.

Confidence Level Detection Risk is closely related to the confidence that the auditor wishes to obtain from his substantive tests. Increased confidence => Low DR => more transactions and balances need to be tested substantively Confidence Level = 100%-Detection Risk Detection Risk Only risk that the auditor has under his control Must be kept low

Materiality and Audit Risk-I Independent of OAR Related to VALUE, NATURE and CONTEXT of Error Materiality relates to the maximum possible misstatements/ error Risk -- concerned with the likelihood of error Materiality – concerned with extent to which we can tolerate error

Materiality and Audit Risk -II Auditor to ensure: Maximum possible error at the desired assurance level < Materiality IR + CR => Expected error rate in the population Materiality => Tolerable error rate in the population

Assessment of Risks-I Assessment of Inherent Risk Depends on nature, complexity and volume of transactions Inherent to these activities or sets of transactions Risk classified as high, moderate or low Possible to assign numerical values to the risk assessed

Assessment of Risks-II Assessment of Control Risk: Assesses adequacy of policies, procedures and systems in the organization Whether controls are adequate to detect errors Expressed either in numerical (%) or qualitative (high, medium, low) terms Assessment of Detection Risk Assurance about transactions required from audit procedures Risk Assurance Guide Sample Size

Detection Risk Assurance Guide Assurance from inherent risk evaluation internal control substantive analytical review procedures Required assurance from detailed substantive tests confidence level High (Excellent system) M ed Low Nil 60 70 75 Med (Good system) 65 80 (Fair system) 85 (Poor System/DST) 92 94 95

Risk Assessment and Sampling Statistical Sampling The population is a homogeneous group There is no bias in the selection of sample items Attribute Sampling, Variable Sampling and MUS Attribute sampling Estimates proportion of items in a population having a certain attribute or characteristic. In audit, estimates the existence or otherwise of an error. Used to derive assurance about prescribed procedures/ controls. Estimates % of error (say, vouchers that have been misclassified)

Attribute sampling Set upper limit of acceptable error, being still assured that systems are in place. Can only be used in assessment of control risk. The attribute : whether a specific control has been applied or not applied.

Types of Audit sampling Variables sampling estimates a quantity e.g. amount of sundry debtors shown in the balance sheet the underassessment in a tax circle.

Monetary Unit Sampling provides quantitative results and is suited to most audit situations More accurate in low level error situations with a relatively small population, where there are no negative or zero balances. ‘PPS’ or ‘Probability Proportional to Size’ the probability of selection becomes proportional to the size of a/c high value items tend to get more weight and therefore more probability of getting picked up in any random selection, since

Sampling Methods Simple random sampling Systematic random sampling Stratified sampling CAATs: IDEA => identified audit tests can directly be applied on the sample elements.

Audit Assumptions Audit works on the principle that higher the risk involved in the transactions, higher the need for more extensive checks. Audit through statistical sampling Assessment of Inherent Risk through auditor’s knowledge, judgment and application of specific auditing procedures like analytical reviews etc. Assessment of Control Risk through Compliance Testing, done through attribute sampling, analytical reviews etc. Design the Sampling Frame for Substantive Testing : determine sampling method, sample size. Evaluation of results of Substantive Tests and expression of audit opinion.

Compliance Testing and Substantive Testing Compliance Testing: review and evaluate the effectiveness of internal control systems Substantive Testing: gather evidence on completeness, accuracy and validity of data. Sampling Risks of an Auditor Sampling Risk in Compliance Testing: risk of over-reliance / under-reliance on controls Sampling Risk in Substantive Testing: risk of incorrect acceptance / rejection Selection of appropriate sample size of utmost importance in minimising risk

Designing a Sample Steps Define population and select an appropriate sampling method: attribute, variable, monetary unit etc. Determine sample size Identify sampling procedure, random, systematic, stratified etc. Perform substantive audit tests on the sample elements Estimate Population Value of Parameter Express audit opinion on the entire population

Determinants of Sample Size 1. Expected Error Rate in Population Error Rate /Amount in the Population: mistakes in vouchers /wrong entries in cash books/stores ledger unauthorized payments cash books not daily checked /physical verifications not done Areas of application sanctions / propriety / regularity / financial audit auditor only wants to confirm if the balance is correctly stated or not without estimating the correct balance The greater the expected error rate, the larger the sample size for the auditor to conclude: actual error rate < tolerate error rate.

2. Tolerate Error Rate in Population Tolerate error rate / amount the maximum error rate the auditor is prepared to accept when deciding whether his initial evaluation of the control risk is valid maximum error rate the auditor is willing to accept and still conclude that the auditee is following the procedures properly tolerable error is limited by the level of materiality set by the auditor The lower the tolerable error, the larger would be the sample size

3. Precision Level Precision level: Difference between the sample estimate and the actual population value The auditor to decide the precision to provide in his estimates Tolerable Error = maximum error the auditor is willing to accept = Maximum (sample estimate + precision level).

Confidence Level Confidence level =100%- DR (%) Confidence level: how certain the auditor is that the actual population measure is within the sample estimates and its associated precision level Occurrence rate Population proportion having the error that audit wishes to test

Acceptable risk of Over-Reliance Risk of under-reliance does not affect the correctness of the auditor’s opinion it only results in increasing his workload Over Reliance may lead to wrong audit opinion When the degree of reliance in controls is high, acceptable risk of over reliance is low and vice versa May be quantified as 5%, 10%, 15% etc.

Estimating Population Value If Computed tolerable error = Sample estimate + precision < tolerable error assurance can be placed by auditor on the system If Computed tolerable error > tolerable error, assurance derived from control has to be reduced assurance required from substantive tests has to be increased

To identify areas of applicability A Few Suggested Areas Checking correct accountal of expenditure/ receipts; Checking calculations of payment or receipts; Checking propriety and regularity of expenditure; Checking interpretation or application of rules /contract clauses /provisions of tax acts; Checking achievement of objective of expenditure / exemption of receipts. Any other areas to be identified

Summing Up Audit is primarily a judgmental process Statistical sampling cannot be a substitute for Auditor’s judgment At best the two are complementary

Nature of Population Distribution Is it necessary to estimate? Assumption of homogeneity-how true? Sampling distribution of mean normal for large sample What about smaller samples? For small samples- what distribution (t?). Testing for a single attribute (say classification mistake) - What distribution to assume?

Case Study