Deutscher Wetterdienst 1FE 13 – 05.11.2015 Linear solutions of flow over mountains COSMO General Meeting WG2 'Numerics and Dynamics' 15.09.2008 Michael.

Slides:



Advertisements
Similar presentations
Formal Computational Skills
Advertisements

HE 316 Term Project Presentation Symmetry Analysis in Fluid Dynamics
Lecture 15: Capillary motion
Martyn Clark Short course on “Model building, inference and hypothesis testing in hydrology” May, 2012.
Günther Zängl, DWD1 Improvements for idealized simulations with the COSMO model Günther Zängl Deutscher Wetterdienst, Offenbach, Germany.
Krakow - September, 15th 2008COSMO WG 2 - Runge Kutta1 Further Developments of the Runge-Kutta Time Integration Scheme Investigation of Convergence (task.
ICONAM ICOsahedral Non-hydrostatic Atmospheric Model -
EARS1160 – Numerical Methods notes by G. Houseman
Aspects of Conditional Simulation and estimation of hydraulic conductivity in coastal aquifers" Luit Jan Slooten.
Total Recall Math, Part 2 Ordinary diff. equations First order ODE, one boundary/initial condition: Second order ODE.
Infinite Sequences and Series
CSE245: Computer-Aided Circuit Simulation and Verification Lecture Note 2: State Equations Prof. Chung-Kuan Cheng 1.
Finite wall wake function Motivation: Study of multi-bunch instability in damping rings. Wake field perturbs Trailing bunches OCS6 damping ring DCO2 damping.
Lecture 7 Exact solutions
Modeling Fluid Phenomena -Vinay Bondhugula (25 th & 27 th April 2006)
Numerical Methods for Partial Differential Equations
Numerical Methods for Partial Differential Equations CAAM 452 Spring 2005 Instructor: Tim Warburton.
Wind Driven Circulation I: Planetary boundary Layer near the sea surface.
SOLUTION FOR THE BOUNDARY LAYER ON A FLAT PLATE
Deutscher Wetterdienst 1 Status report of WG2 - Numerics and Dynamics COSMO General Meeting , Offenbach Michael Baldauf Deutscher Wetterdienst,
The Air-Sea Momentum Exchange R.W. Stewart; 1973 Dahai Jeong - AMP.
Monin-Obukhoff Similarity Theory
Hydraulic Routing in Rivers
CSE245: Computer-Aided Circuit Simulation and Verification Lecture Note 2: State Equations Prof. Chung-Kuan Cheng.
M. Baldauf, DWD Numerical contributions to the Priority Project ‘Runge-Kutta’ COSMO General Meeting, Working Group 2 (Numerics) Bukarest,
The Theory for Gradient Chromatography Revisited by Jan Ståhlberg Academy of Chromatography
Development of WRF-CMAQ Interface Processor (WCIP)
Chapter 9: Differential Analysis of Fluid Flow SCHOOL OF BIOPROCESS ENGINEERING, UNIVERSITI MALAYSIA PERLIS.
MAE 3241: AERODYNAMICS AND FLIGHT MECHANICS Compressible Flow Over Airfoils: Linearized Subsonic Flow Mechanical and Aerospace Engineering Department Florida.
C M C C Centro Euro-Mediterraneo per i Cambiamenti Climatici COSMO General Meeting - September 8th, 2009 COSMO WG 2 - CDC 1 An implicit solver based on.
A conservative FE-discretisation of the Navier-Stokes equation JASS 2005, St. Petersburg Thomas Satzger.
A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation Eigil Kaas, Bennert Machenhauer and Peter Hjort Lauritzen Danish.
Model Task 0A: Programming the 1D upstream scheme ATM 562 Fall 2015 Fovell 1.
Order of Magnitude Scaling of Complex Engineering Problems Patricio F. Mendez Thomas W. Eagar May 14 th, 1999.
Numerical Solution of the Diffusivity Equation. FAQReferencesSummaryInfo Learning Objectives Introduction Discrete Systems Taylor Series Approximation.
24-28 Sept. 2012Baldauf, Reinert, Zängl (DWD)1 Michael Baldauf, Daniel Reinert, Günther Zängl (DWD, Germany) PDEs on the sphere, Cambridge, Sept.
A baroclinic instability test case for dynamical cores of GCMs Christiane Jablonowski (University of Michigan / GFDL) David L. Williamson (NCAR) AMWG Meeting,
Numerical simulations of inertia-gravity waves and hydrostatic mountain waves using EULAG model Bogdan Rosa, Marcin Kurowski, Zbigniew Piotrowski and Michał.
Hydraulic Routing in Rivers Reference: HEC-RAS Hydraulic Reference Manual, Version 4.1, Chapters 1 and 2 Reading: HEC-RAS Manual pp. 2-1 to 2-12 Applied.
An example of vertical profiles of temperature, salinity and density.
Deutscher Wetterdienst 1FE 13 – An Improved Third Order Vertical Advection Scheme for the Runge-Kutta Dynamical Core Michael Baldauf (DWD) Bill.
Errors, Uncertainties in Data Assimilation François-Xavier LE DIMET Université Joseph Fourier+INRIA Projet IDOPT, Grenoble, France.
Quality of model and Error Analysis in Variational Data Assimilation François-Xavier LE DIMET Victor SHUTYAEV Université Joseph Fourier+INRIA Projet IDOPT,
M. Baldauf, U. Blahak (DWD)1 Status report of WG2 - Numerics and Dynamics COSMO General Meeting Sept. 2013, Sibiu M. Baldauf, U. Blahak (DWD)
Level of No Motion (LNM)
CSE245: Computer-Aided Circuit Simulation and Verification Lecture Note 2: State Equations Spring 2010 Prof. Chung-Kuan Cheng.
Deutscher Wetterdienst COSMO-ICON Physics Current Status and Plans Ulrich Schättler Source Code Administrator COSMO-Model.
Standardized Test Set for Nonhydrostatic Dynamical Cores of NWP Models
Mass Coordinate WRF Dynamical Core - Eulerian geometric height coordinate (z) core (in framework, parallel, tested in idealized, NWP applications) - Eulerian.
1 Reformulation of the LM fast- waves equation part including a radiative upper boundary condition Almut Gassmann and Hans-Joachim Herzog (Meteorological.
Math 445: Applied PDEs: models, problems, methods D. Gurarie.
Governing Equations II
COSMO-DE, M. Baldauf Stability considerations of advection schemes and Improvements of Semi-Lagrange advection for the Runge-Kutta dynamical.
Deutscher Wetterdienst Flux form semi-Lagrangian transport in ICON: construction and results of idealised test cases Daniel Reinert Deutscher Wetterdienst.
Deutscher Wetterdienst 1FE 13 – Working group 2: Dynamics and Numerics report ‘Oct – Sept. 2008’ COSMO General Meeting, Krakau
Flow of Compressible Fluids. Definition A compressible flow is a flow in which the fluid density ρ varies significantly within the flowfield. Therefore,
Priority project CDC Task 1.4: Choice of the anelastic equation system and Milestone 3.2: Suitability of fundamental approximations PP CDC-Meeting, ,
Computational Fluid Dynamics Lecture II Numerical Methods and Criteria for CFD Dr. Ugur GUVEN Professor of Aerospace Engineering.
Wind Driven Circulation I: Ekman Layer. Scaling of the horizontal components  (accuracy, 1% ~ 1‰) Rossby Number Vertical Ekman Number R o and E v are.
Kazushi Takemura, Ishioka Keiichi, Shoichi Shige
Development of nonhydrostatic models at the JMA
Monin-Obukhoff Similarity Theory
Conservative Dynamical Core (CDC)
“Consolidation of the Surface-to-Atmosphere Transfer-scheme: ConSAT
CSE245: Computer-Aided Circuit Simulation and Verification
Mathematical Modeling, Numerical Methods, and Problem Solving
topic13_grid_generation
Turbulent Boundary Layer
Bogdan Rosa1, Marcin Kurowski1, Damian Wójcik1,
Conservative Dynamical Core (CDC)
Presentation transcript:

Deutscher Wetterdienst 1FE 13 – Linear solutions of flow over mountains COSMO General Meeting WG2 'Numerics and Dynamics' Michael Baldauf Deutscher Wetterdienst, Offenbach, Germany

Deutscher Wetterdienst 2FE 13 – Development of a program to calculate a reference solution for convergence tests (task 5) Linear solutions of flow over mountain there exist a huge number of different linear solutions for flow over mountains: Queney (1947, 1948), Smith (1979, 1980),... reason: different goals: to get insight into the physical process: try to approximate as far as possible to get simple solutions/formulae to test numerical models: try to reduce the approximations as far as possible (perhaps by requiring more preconditions) to get an 'analytical' solution which fits best to the PDE- system (better say: a solution which can be calculated with higher numerical confidence, e.g. calculation of integrals or FFT's instead of solving PDE's)

Deutscher Wetterdienst 3FE 13 – Starting point: compressible Euler equations  COSMO-dynamical core Preconditions: no friction only adiabatic processes (in particular no phase changes) ideal gas law c p =const., c V =const., R=const. no Coriolis force all movements take place on a plane (no earth curvature) These preconditions can be fulfilled easily by a dynamical core. Only 2 approximations will be made: 1.linearisation  1/Fr = h N / U <<< 1  simulate very flat mountains at high inflow velocities 2.the assumption that k z =const (see below; not absolutely necessary)

Deutscher Wetterdienst 4FE 13 – 'tracer'-parameter:  1 = 0/1 : hydrostatic / non-hydrostatic approximation  2 = 0/1 : incompressible / compressible model  3 = 0/1 : shallow / deep convection/atmosphere Compressible Euler equations (adiabatic, f=0,...) e.g. Smith (1979)

Deutscher Wetterdienst 5FE 13 – Base state: stationary, hydrostatic, only depends on z

Deutscher Wetterdienst 6FE 13 – Fouriertransformation: horizontal and temporal Perturbation equations: 4th 'tracer'-parameter introduced (Pichler, 1997):  4 =0/1 : small / big Mach-numbers

Deutscher Wetterdienst 7FE 13 – Def.: Heterogenity (Queney, 1947) Def: Stability parameter Def: Mach-number Def: Some abbreviations:

Deutscher Wetterdienst 8FE 13 – Stationary case (  =0 ) From perturbation equations: express u', v',  ' and p' by w'  equation 2nd order for w '( k x, k y, z ): with coefficient functions:

Deutscher Wetterdienst 9FE 13 – The whole derivation is in principle similar to many textbooks, but the only (!) approximation up to now is linearisation. Variable transformation (modified Bretherton (1960)-transformation): There are two special cases, which can be handled easily separately: 1.)  =0, k x =0, k y  0 2.)  =0, k x =0, k y =0

Deutscher Wetterdienst 10FE 13 – Boundary conditions: below: linearisation of the free-slip condition: above: assume k z =const. case k z ² < 0 : exponentially growing solution seems unphysical  chooseand omit term ~B case k z ² > 0 : no energy transport downwards (Smith, 1980)  choose and omit term ~B

Deutscher Wetterdienst 11FE 13 – Choice of the base state: N = const.  k z ~ const. (= 2nd approx.!) experience: k z =const. is fulfilled rather good Some features of 'Lin_Mountain': written in C/C++ Makefile for Linux available Binary output (with an additional.ctl-File for GrADS) Use of FFT (Numerical recipes, Press et al.) for estimation about the accuracy of the approximation ' k z =const.' max. height:~ 35 km

Deutscher Wetterdienst 12FE 13 – nx 2 ny 160 nz dx dy dz 10.0 U_ T_00 1.0e5 p_ N_BV 1 delta1__0=hydrostat/1=nichthydrostat 1 delta2__0=inkompress/1=kompress 1 delta3__0=flach/1=tief 1 delta4__0=kleine/1=grosse_Machzahl topo.d oro_datei topo_ft.d oro_ft_datei Gaussdamm oro_typ oro_breite 10.0 oro_hoehe gauss_2D Ausgabekennung./ Ausgabepfad 100 ix_min 400 ix_max 1 ix_step 0 iy_min 0 iy_max 1 iy_step 0 iz_min 159 iz_max 1 FFT Input-File: (abc.inp)

Deutscher Wetterdienst 13FE 13 – Example 1: 2D-test case gaussian hill (for the Input-Data: slide before) w [m/s]

Deutscher Wetterdienst 14FE 13 – nx 2 ny 100 nz dx dy dz 10.0 U_ T_00 1.0e5 p_ N_BV 1 delta1__0=hydrostat/1=nichthydrostat 1 delta2__0=inkompress/1=kompress 1 delta3__0=flach/1=tief 1 delta4__0=kleine/1=grosse_Machzahl topo.d oro_datei topo_ft.d oro_ft_datei Rippeldamm oro_typ oro_breite oro_hoehe schaer Ausgabekennung./ Ausgabepfad 100 ix_min 400 ix_max 1 ix_step 0 iy_min 0 iy_max 1 iy_step 0 iz_min 99 iz_max 1 FFT Schaer et al. (2002) test case test case of Schaer et al (2002)

Deutscher Wetterdienst 15FE 13 – Example 2: 2D-test case from Schaer et al (2002) w [m/s]

Deutscher Wetterdienst 16FE 13 – nx 512 ny 20 nz dx dy dz 10.0 U_ T_00 1.0e5 p_ N_BV 1 delta1__0=hydrostat/1=nichthydrostat 1 delta2__0=inkompress/1=kompress 1 delta3__0=flach/1=tief 1 delta4__0=kleine/1=grosse_Machzahl topo.d oro_datei topo_ft.d oro_ft_datei Gaussberg oro_typ oro_breite 10.0 oro_hoehe gauss_3D Ausgabekennung./ Ausgabepfad 100 ix_min 400 ix_max 1 ix_step 100 iy_min 400 iy_max 1 iy_step 0 iz_min 19 iz_max 1 FFT test case: 3D Gaussian hill

Deutscher Wetterdienst 17FE 13 – Example 3: 3D Gaussian Hill w [m/s]

Deutscher Wetterdienst 18FE 13 – Optimization of horizontal advection: up to COSMO 4.3: 'advection operators' = a subroutine acting on every single grid point  compiler has problems to optimize loops since COSMO 4.4: advection routines using 'field operations' (and additionally the DFI modifications by Lucio Torrisi) Efficiency gain for routine COSMO-DE at DWD (IBM): speedup of the horizontal advection alone: ~ 3 times faster overall reduction of model run time: ~ 1 Min. / 20 Min. ~ 5% Furthermore, some inconsistencies using metrical factors could be repaired acrlat(j,1)  acrlat(j,2) lent to an error of ~ -0.05% in the term v dw/dy

Deutscher Wetterdienst 19FE 13 – ngranularity: Each sample hit covers 4 bytes. Time: seconds called/total parents index %time self descendents called+self name index called/total children /1.__start [2] [1] lmorg [1] /8514.organize_dynamics [3] /8514.organize_physics [6] /4256.initialize_loop [32] /8515.organize_diagnosis [39] /8514.organize_data [38] /12770.organize_assimilation [63] /4256.near_surface [79] /4256.exchange_runge_kutta [98] /8514.lmorg [1] [3] organize_dynamics [3] /4256.__src_runge_kutta_NMOD_org_runge_kutta [4] /4256.__src_relaxation_NMOD_sardass [31] /1.init_dynamics [302] /1.__src_relaxation_NMOD_init_relaxation [641] /1.input_dynctl [1105] /4256.organize_dynamics [3] [4] __src_runge_kutta_NMOD_org_runge_kutta [4] /12768.__fast_waves_rk_NMOD_fast_waves_runge_kutta [5] ===> /12768.__src_advection_rk_NMOD_advection_alt [7] /4256.__src_advection_rk_NMOD_advection_pd [11] /12768.__src_slow_tendencies_rk_NMOD_complete_tendencies_uvwtpp [13] /12768.__src_runge_kutta_NMOD_org_runge_kutta [4] [7] __src_advection_rk_NMOD_advection_alt [7] / __numeric_utilities_rk_NMOD_udsdx [8]... Old version with 'advection operator' (gprof - output)

Deutscher Wetterdienst 20FE 13 – ngranularity: Each sample hit covers 4 bytes. Time: seconds called/total parents index %time self descendents called+self name index called/total children 6.6s [1] lmorg [1] /8514.organize_dynamics [2] /8514.organize_physics [5] /8515.organize_diagnosis [42] /8514.organize_data [41] /12770.organize_assimilation [65] /4256.near_surface [81] /8514.lmorg [1] [2] organize_dynamics [2] /4256.__src_runge_kutta_NMOD_org_runge_kutta [3] /4256.organize_dynamics [2] [3] __src_runge_kutta_NMOD_org_runge_kutta [3] /12768.__fast_waves_rk_NMOD_fast_waves_runge_kutta [4] /4256.__src_advection_rk_NMOD_advection_pd [7] /12768.__src_slow_tendencies_rk_NMOD_complete_tendencies_uvwtpp [8] ===> /12768.__src_advection_rk_NMOD_advection [14] /4256.__hori_diffusion_NMOD_comp_hori_diff [17] /12768.__src_runge_kutta_NMOD_org_runge_kutta [3] [14] __src_advection_rk_NMOD_advection [14] /76608.__src_advection_rk_NMOD_horiz_adv_driver [24] / __environment_NMOD_exchg_boundaries [35] / __numeric_utilities_rk_NMOD_udsdx [38] New version with 'field operators' (gprof - output)