MTH 125 Calculus I
SECTION 1.5 Inverse Functions
Inverse of a Function Definition (p. 37) Note
Pictorial Representation
Example 1
Graphically...
Inverses Additional Properties of Inverses The Existence of an Inverse Function (p. 39) A function has an inverse function if and only if it is one-to- one. Thus, graphically it will have to pass the horizontal line test.
Example 2
Finding the Inverse of a Function
Example 3
Inverse Trigonometric Functions
“Inverting” Trigonometric Functions
Formal Definitions
Inverse Trigonometric Properties
Example 4
Example 5
Example 6
Example 7
SECTION 1.6 Exponential & Logarithmic Functions
Example 1
Exponential & Logaritimic Fnc.’s
The Number e and the ln Function
Example 2
Example 3
Example 4
Logarithms Properties of (Natural) Logarithms
Logarithms (cont.) Properties of (Natural) Logarithms (cont.)
Example 5
Example 6
Example 7