7.3: Sample Means.

Slides:



Advertisements
Similar presentations
Sample Proportions 7.3b The Central Limit Theorem CLT Hw: pg 455: 57, 59, 61, 63,
Advertisements

+ 7.3B The Central Limit Theorem 1/16/ Section 7.3 Sampling Distributions & The CLT After this section, you should be able to… APPLY the central.
Chapter 7 Sampling Distributions
CHAPTER 11: Sampling Distributions
C HAPTER 9 Section 9.3 – Sample Means. S AMPLE M EANS Sample proportions arise most often when we are interested incategorical variables. When we record.
Chapter 7: Sampling Distributions
Chapter 9: Sampling Distributions
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 7: Sampling Distributions Section 7.3 Sample Means.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 7 Sampling Distributions 7.3 Sample Means.
CHAPTER 11: Sampling Distributions
Chapter 5 Sampling Distributions
Chapter 7: Sampling Distributions Section 7.3 Sample Means.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 7: Sampling Distributions Section 7.3 Sample Means.
AP Statistics 9.3 Sample Means.
Correct Answer: A AP1.14. Boxplots of two data sets are shown.
AP STATISTICS LESSON SAMPLE MEANS. ESSENTIAL QUESTION: How are questions involving sample means solved? Objectives:  To find the mean of a sample.
Section 9.3 Distribution of Sample Means AP Statistics February 5, 2010 Berkley High School.
9.3: Sample Means.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 7: Sampling Distributions Section 7.3 Sample Means.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 7: Sampling Distributions Section 7.3 Sample Means.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 7 Sampling Distributions 7.3 Sample Means.
AP Statistics Section 9.3B The Central Limit Theorem.
Lesson Introduction to the Practice of Statistics.
Stat 1510: Sampling Distributions
C HAPTER 7: S AMPLING D ISTRIBUTIONS S ECTION 7.3 S AMPLE M EANS 7.3 Homework: #’s 49-50,53,55, & Chapter 7 Test: Thursday Reading Guide: 8.1 Due.
An opinion poll asks, “Are you afraid to go outside at night within a mile of your home because of crime?” Suppose that the proportion of all adults who.
7.2: Sample Proportions.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 7: Sampling Distributions Section 7.3 Sample Means.
Section 7.3 Second Day Central Limit Theorem. Quick Review.
P.439 – 441 #27 – 30, 34, 39, 43 – ) (a) We would be surprised to find 32% orange candies in this case. Very few of the simulations with sample size.
Lecture PowerPoint Slides Basic Practice of Statistics 7 th Edition.
+ Unit 7: Sampling Distributions Lesson 3: Sample Means.
7.3 Sample Means Objectives SWBAT: FIND the mean and standard deviation of the sampling distribution of a sample mean. CHECK the 10% condition before calculating.
Lecture PowerPoint Slides Basic Practice of Statistics 7 th Edition.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 7: Sampling Distributions Section 7.1 What is a Sampling Distribution?
7.3 Sample Means Outcome: I will find the mean and the standard deviation of the sampling distributions of a sample mean and explain how the shape of the.
Chapter 7: Sampling Distributions
Sampling Distributions
CHAPTER 7 Sampling Distributions
CHAPTER 7 Sampling Distributions
Chapter 7: Sampling Distributions
Warm Up Check solutions to homework 7.2….
Chapter 5 Sampling Distributions
Chapter 5 Sampling Distributions
Chapter 5 Sampling Distributions
EQ: How are sample means distributed?
Chapter 7: Sampling Distributions
Sampling Distributions
Click the mouse button or press the Space Bar to display the answers.
9.3 Sample Means.
The Practice of Statistics
Chapter 7: Sampling Distributions
Section 9.3 Distribution of Sample Means
CHAPTER 7 Sampling Distributions
Chapter 7: Sampling Distributions
CHAPTER 7 Sampling Distributions
Warmup It is generally believed that near sightedness affects about 12% of all children. A school district has registered 170 incoming kindergarten children.
CHAPTER 11: Sampling Distributions
Chapter 7: Sampling Distributions
Chapter 5 Sampling Distributions
Chapter 7: Sampling Distributions
Chapter 7: Sampling Distributions
Chapter 7: Sampling Distributions
CHAPTER 7 Sampling Distributions
1/14/ Sampling Distributions.
Chapter 7: Sampling Distributions
Chapter 7: Sampling Distributions
Chapter 7: Sampling Distributions
Chapter 7: Sampling Distributions
CHAPTER 7 Sampling Distributions
Presentation transcript:

7.3: Sample Means

Section 7.3 Sample Means After this section, you should be able to… FIND the mean and standard deviation of the sampling distribution of a sample mean CALCULATE probabilities involving a sample mean when the population distribution is Normal EXPLAIN how the shape of the sampling distribution of sample means is related to the shape of the population distribution APPLY the central limit theorem to help find probabilities involving a sample mean

Sample Means Consider the mean household earnings for samples of size 100. Compare the population distribution on the left with the sampling distribution on the right. What do you notice about the shape, center, and spread of each?

Sample Means Formulas The mean of the sample distribution: The Standard Deviation of the sampling distribution: Notes: The sample size must be less than 10% of the population. The mean and standard deviation of the sample mean are true no matter the same of the population distribution.

REVIEW: Young Women’s Heights The height of young women follows a Normal distribution with mean µ = 64.5 inches and standard deviation σ = 2.5 inches. Find the probability that a randomly selected young woman is taller than 66.5 inches.

REVIEW: Young Women’s Heights STATE: Let X = the height of a randomly selected young woman. X is N(64.5, 2.5). PLAN: Since the “sample” in this case is only one person, the sample size is clearly smaller than the 10% of the population. DO: OR Normalcdf (66.5, 10000, 64.5, 2.5) = 0.2118 CONCLUDE: The probability of choosing a young woman at random whose height exceeds 66.5 inches is about 0.21.

Example: Young Women’s Heights The height of young women follows a Normal distribution with mean µ = 64.5 inches and standard deviation σ = 2.5 inches. Find the probability that the mean height of an SRS of 10 young women exceeds 66.5 inches.

Example: Young Women’s Heights   OR normalcdf(66.5, 10000, 64.5, 0.7905) = 0.0057 CONCLUDE: There is a 0.57% percent chance of getting a sample of 10 women with a mean height of 66.5 It is very unlikely (less than a 1% chance) that we would choose an SRS of 10 young women whose average height exceeds 66.5 inches.

Sample Distributions & Normality If the population is Normal, then the sample distribution is Normal. No further checks are need! If the population is NOT Normal, then…. If the sample is large enough, the distribution of sample means is “approximately” Normal, no matter what shape the population distribution has, as long as the population has a finite standard deviation.

Sample Distributions & Normality: HOW LARGE IS LARGE ENOUGH?

Sample Distributions & Normality: HOW LARGE IS LARGE ENOUGH? If the Population is…. Minimum Sample Size to assume Normal Normal Slightly Skewed 15 Heavily Skewed 30

Example: Servicing Air Conditioners Based on many service records from the past year, the time (in hours) that a technician requires to complete preventative maintenance on an air conditioner follows the distribution that is strongly right-skewed, and whose most likely outcomes are close to 0. The mean time is µ = 1 hour and the standard deviation is σ = 1 Your company will service an SRS of 70 air conditioners. You have budgeted 1.1 hours per unit. Will this be enough? What is the chance that the technicians will not finish within the time frame?

Example: Servicing Air Conditioners PLAN/STATE: Independence: It is reasonable to assume that the company has serviced more than 700 unit, therefore the 70 units in the sample represent less than 10% of the population. Normal: Even though the population has a strong right skew, a sample size of 70 is large enough to assume normality.

Example: Servicing Air Conditioners DO: OR Normalcdf (1.1000001, 10000, 1, 0.1195) = 0.2013 CONCLUDE: If you budget 1.1 hours per unit, there is a 20.13% chance the technicians will not complete the work within the budgeted time.