1 CHAOTIC CIRCUITS The way the electron bounces
2 TOPICS l Linear Circuits –Inductor –Diode l Non-Linear Circuits –How can we tell if a circuit is behaving non-linearly ? –Diode and inductor –Transistor l Bifurcation Diagrams l The Feigenbaum number l Why are these systems chaotic ? l Attractors
3 MAY POPULATION MODEL
4 Basic Population Model POPULATION SEX FOOD SUPPLY
5 May’s Population Model POPULATION SEX FOOD SUPPLY FEEDBACK
6 Attractor for May model
7
8 LINEAR CIRCUITS
9 INDUCTOR
10 Input Voltage: 5 V
11 Input Voltage: 10 V
12 Input Voltage: 15 V
13 Input Voltage: 20 V
14 Inductor ( Output vs. Input) Input Voltage (peak to Peak) Output Voltage (peak to peak)
15 DIODE
16 Input Voltage: 5 V
17 Input Voltage: 10 V
18 Input Voltage: 15 V
19 Input Voltage: 20 V
20 Diode ( Output vs. Input Voltage) Input Voltage (peak to peak) Output Voltage (peak to peak) y =
21 NON-LINEAR CIRCUITS
22 How can we tell if a circuit is behaving non-linearly?
23 Period 1
24 Period 2
25 Period 4
26 Diode-Inductor Circuit
27 Circuit Schematic Inductor 5.89 mH Diode Variable Voltage Source AC
28 Period 1
29 Period 2
30 Period 4
31 Period 8
32 Period 16
33 Chaos
34 Transistor Circuit
35 Circuit Schematic Inductor A.C. Function Generator Transistor npn type Variable Resistor D.C. Voltage Source Load inductor Load Variable resistor Ground Feedback
36 FEEDBACK SIGNAL AMPLIFIER POWER SUPPLY OUTPUT Simplified Schematic
37 Period 1
38 Period 2
39 Period 4
40 Period 8
41 Period 16
42 Chaos
43 BIFURCATION DIAGRAMS
44 Bifurcation Diagram ( Inductor) Output Voltage (peak to peak) Input Voltage (peak to Peak) y = x
45
46 Output Voltage (peak to peak) Input Voltage (peak to peak) Bifurcation Diagram (Diode-inductor)
47
48 Bifurcation Diagram (Transistor) Input Voltage (peak to peak) Output Voltage (peak to peak)
49
50 Mathematical model (May model)
51
52 Input Voltage (peak to peak) Output Voltage (peak to peak) Chaotic Region (diode-inductor)
53
54 Output Voltage (peak to peak) Input Voltage (peak to peak) Periodic Region Amplified (diode)
55
56
57 Feigenbaum Number
58 Output Voltage (peak to peak) Input Voltage (peak to peak) 4.7 V 1.1 V 1 = 4.7 / 1.1 = 4.27 Diode-Inductor Circuit
59 Transistor Circuit 1.2 V 0.28 V 1 = 1.2 / 0.28 = Transistor Circuit Input Voltage (peak to peak) Output Voltage (peak to peak)
60 Feigenbaum Number Theoretical value: ∞ = Experimental value: = 4.27 (diode-inductor) Experimental value: = (transistor) Other experimental values recorded: Electrical circuit (varactor) = Fluid Mechanics (Convection) = 4.4
61 Why are these systems chaotic ?
62 Water gate analogy of a diode
63 Water rate corresponding to time constant
64 Simple Linear Amplifier SIGNAL AMPLIFIER POWER SUPPLY
65 Chaotic Amplifier Circuit SIGNAL AMPLIFIER POWER SUPPLY FEEDBACK
66 ATTRACTORS
67
68
69 Inductor
70 Input Voltage: 3.23 V
71 Input Voltage: 4.44 V
72 Input Voltage: 5.74 V
73 Input Voltage: 7.11 V
74 Input Voltage: 9.18 V
75 Input Voltage: 11.0 V
76 Input Voltage: 13.0 V
77 Diode-Inductor
78 Period 1 Input Voltage: 2.16 V
79 Butterfly Diagram ( Period 2) Input Voltage: 2.75 V
80 Period 4 Input Voltage: 7.45 V
81 Period 8 Input Voltage: 8.55 V
82 CHAOS Input Voltage: 8.5 V
83 Transistor
84 Input Voltage: V
85 Input Voltage: V
86 Input Voltage: 1.63 V
87 Begin shifting phase Input Voltage: 1.86 V
88 Phase shift complete Input Voltage: 1.98 V
89 Butterfly Diagram ( Period 2) Input Voltage: 3.06 V
90 Period 2 (anomaly) Input Voltage: 3.34 V
91 Period 4 Input Voltage: 4.19 V
92 Period 8 Input Voltage: 4.38 V
93 Period 16 ? Input Voltage: 4.54 V
94 Approaching Chaos Input Voltage: 4.96 V
95 CHAOS Input Voltage: 7.34 V
96 More Chaos
97 Acknowledgments l M.J. Murdock Charitable Trust l Fluke Corporation l Thomas J. Holthaus l Pacific Lutheran University l Dr. Keith Clay l Lori Briggs l Jana Steiner l Christian Dilley