GRAMS Modeling of Oxygen- Rich Dust around Red Supergiant and AGB Stars in the Large Magellanic Cloud Benjamin Sargent Collaborators: Sundar Srinivasan,

Slides:



Advertisements
Similar presentations
Dust emission from Haebes: Disks and Envelopes A. Miroshnichenko (Pulkovo/Toledo) Z. Ivezic (Princeton) D. Vinkovic (UK) M. Elitzur (UK) ApJ 475, L41 (1997;
Advertisements

Multi-wavelength Observations of Galaxies at z>~2 Mauro Giavalisco (UMass) + The GOODS Team + The COSMOS Team.
Origin and evolution of dust in galaxies Can we account for the dust in galaxies by stellar sources? Mikako Matsuura Origin’s fellow, Institute of Origins,
207th AAS Meeting Washington D.C., 8-13 January The Spitzer SWIRE Legacy Program Spitzer Wide-Area Infrared Extragalactic Survey Mari Polletta (UCSD)
14 May 2004ALMA Workshop UMD Margaret Meixner (STScI) Stars and Their Evolution: as viewed by ALMA Margaret Meixner STScI.
Improving mass and age estimates of unresolved stellar clusters Margaret Hanson & Bogdan Popescu Department of Physics.
Efficient Monte Carlo continuum radiative transfer with SKIRT Maarten Baes 2 nd East-Asia Numerical Astrophysics Meeting, Daejeon, Korea 3 November 2006.
Studying circumstellar envelopes with ALMA
Physical Properties of Spectroscopically-Confirmed z>6 Galaxies By Charles Griffin With special thanks to Dr. Eiichi Egami, and Dr. Benjamin Clément NASA.
The Independency of Stellar Mass-Loss Rates on Stellar X-ray Luminosity and Activity Space Telescope Science Institute – 2012.
PROPERTIES OF CIRCUMSTELLAR DUST IN SYMBIOTIC MIRAS D. Kotnik-Karuza 1, T. Jurkić 1, M. Friedjung 2 1 Physics Dept., University of Rijeka, Rijeka, Croatia.
CRyA Mass Loss Return from Stars to Galaxies, STScI, 30 March 2012 Self-consistent mass-loss in stellar population synthesis models Rosa A. González-Lópezlira.
Gas and Star Formation in the Circinus Galaxy Bi-Qing For ( 傅碧晴 ) SIEF John Stocker Fellow ICRAR / University of Western Australia Baerbel Koribalski (CSIRO.
– HCO + very abundant in molecular clouds – It’s detection in circumstellar envelopes has been elusive – Models of oxygen-rich circumstellar envelopes.
Mass Loss from Red Giant Branch (and AGB) Stars in Globular Clusters Andrea Dupree Harvard-Smithsonian Center for Astrophysics AGB Workshop: 20 May 2010.
Early results from the IRS Jim Houck and the IRS team - AAS Denver 6/1/04.
A Wind Analysis of an Evolved Giant Phase Resolved FUSE and HST/STIS Observations of an Eclipsing Symbiotic Binary Cian Crowley Dr. Brian Espey Trinity.
The GRAMS Evolved Star Mass-Loss Models: CMDs, CCDs, and Stellar Population Analysis for the LMC Benjamin Sargent Collaborators: S. Srinivasan, M. Meixner,
APN III 29 July 2003 William B. Latter SIRTF Science Center and California Institute of Technology.
Lecture 13: Projects October 5, Spitzer Space Telescope 0.85 meter infrared telescope Launched in August 2003 Cooled to ~1.5 K Warm (2009-); IRAC.
Structure of circumstellar envelope around AGB and post-AGB stars Dinh-V-Trung Sun Kwok, P.J. Chiu, M.Y. Wang, S. Muller, A. Lo, N. Hirano, M. Mariappan,
Episodic Mass Loss from Post- AGB Stars Angela Speck Angela Speck, Margaret Meixner, Maia Nenkova, Moshe Elitzur & Gill Knapp.
Lessons from other wavelengths. A picture may be worth a thousand words, but a spectrum is worth a thousand pictures.
U. Western Ontario Protoplanetary Disk Workshop, 19 May William Forrest (U of Rochester) Kyoung Hee Kim, Dan Watson, Ben Sargent (U. of R.) and.
Margaret Meixner (STScI, JHU) March 7, 2013
Astrophysics from Space Lecture 8: Dusty starburst galaxies Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
Massive galaxies at z > 1.5 By Hans Buist Supervisor Scott Trager Date22nd of june 2007.
L. Matrà 1,2, B. Merín 1, C. Alves de Oliveira 1, N. Huélamo 3, Á. Kóspál 4, N. L.J. Cox 5, Á. Ribas 1,3, E. Puga 1, R. Vavrek 1, P. Royer 5, T. Prusti.
The potential of JWST to Measure the Mass- Loss Return from Stars to Galaxies Acknowledgements: Funding from NASA-ADAP, Herschel/HERITAGE, and NAG5 grants.
What We Know About Stars So Far
STUDYING NEBULAE EJECTED FROM MASSIVE STARS WITH HERSCHEL Chloi Vamvatira-Nakou ARC meeting - 11 February 2010 Centre Spatiale de Liège (CSL) (PhD student.
Dust Envelopes around Oxygen-rich AGB stars Kyung-Won Suh Dept. of Astronomy & Space Science Chungbuk National University, Korea
Mid-infrared Spectral Evolution of Post-AGB Stars Kevin Volk, Gemini Observatory.
VNGS science highlight: PDR models of M51 [CII]/[OI]63 ([CII]+[OI]63)/F TIR Similar gas properties in arm and interarm regions. Higher densities and stronger.
The Extremely Red Objects in the CLASH Fields The Extremely Red Galaxies in CLASH Fields Xinwen Shu (CEA, Saclay and USTC) CLASH 2013 Team meeting – September.
Review for Quiz 2. Outline of Part 2 Properties of Stars  Distances, luminosities, spectral types, temperatures, sizes  Binary stars, methods of estimating.
Spitzer IRS spectra of PAH emission from
Setting the Stage for Evolution & Nucleosynthesis of Cluster AGB Stars Using Pulsation Analysis Devika Kamath Research School of Astronomy & Astrophysics.
Scaling Relations in HI Selected Star-Forming Galaxies Gerhardt R. Meurer The Johns Hopkins University Gerhardt R. Meurer The Johns Hopkins University.
HERschel Observations of Edge-on Spirals (HEROES) Joris Verstappen (UGent) for the HEROES team (UGent, Cardiff University, INAF-Arcetri, KU Leuven, VUB,
Stellar evolution and the ‘O-rich AGB sequence’ F. Jiménez-Esteban 1,2, P. García-Lario 2 & D. Engels 1 1- Hamburger Sterwarte / Universität Hamburg 2-
Massive-Star Supernovae as Major Dust Factories Ben E. K. Sugerman, Barbara Ercolano, M. J. Barlow, A. G. G. M. Tielens, Geoffrey C. Clayton, Albert A.
AKARI IRC survey of the Large Magellanic Cloud Yoshifusa Ita, Daisuke Kato,Takashi Onaka, & AKARI LMC team Jeju1.
Investigations of dust heating in M81, M83 and NGC 2403 with Herschel and Spitzer George J. Bendo Very Nearby Galaxies Survey.
Spectroscopic Analysis of the mid-IR excesses of WDs Jana Bilikova 1 You-Hua Chu 1, Kate Su 2, Robert Gruendl 1, et al. 1 U. of Illinois at Urbana-Champaign,
Diffraction-limited bispectrum speckle interferometry of the carbon star IRC with 73 mas resolution: The dynamic evolution of the innermost circumstellar.
1 The Red Rectangle Nebula excited by excited species Nadine Wehres, Claire Romanzin, Hans Van Winckel, Harold Linnartz, Xander Tielens.
Identification of red supergiants in the Local Group with mid-IR photometry Nikolay Britavskiy NOA supervisor: Dr. Alceste Bonanos Collaborators: S. Williams,
5-9th September 2011 SED2011 conference A new model for the infrared emission of IRAS F Andreas Efstathiou European University Cyprus.
1 Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1) Kurucz ATLAS LTE code Line Blanketing Models, Spectra Observational Diagnostics.
2/6/2016 DCH-1 JWST/MIRI Space Telescope Science Institute The Infrared Sky: Background Considerations for JWST Dean C. Hines & Christine Chen MIRI Instrument.
The HerMES SPIRE Submillimeter Luminosity Function Mattia Vaccari & Lucia Marchetti & Alberto Franceschini (University of Padova) Isaac Roseboom (University.
The circumstellar environment of evolved stars as seen by VLTI / MIDI Keiichi Ohnaka Max-Planck-Institut für Radioastronomie, Infrared Interferometry Group.
The Mira variable S Ori: SiO maser shells related to the photosphere and dust shell at 3 epochs Markus Wittkowski (ESO), David A. Boboltz (U.S. Naval Observatory),
The Cores to Disks Spitzer Legacy Science Project PI: Neal J. Evans II and the c2d Team Maryland Team: Mundy, Lai, Chapman and several UG students.
Star Formation: From Cores to Disks
Variation of the 9.7 µm Silicate Absorption Feature with Extinction in the Dense Interstellar Medium Megan M. Bagley with Dr. Jean E. Chiar, SETI Institute.
9 Gyr of massive galaxy evolution Bell (MPIA), Wolf (Oxford), Papovich (Arizona), McIntosh (UMass), and the COMBO-17, GEMS and MIPS teams Baltimore 27.
NML Cyg The ARO 1 mm Survey of the Oxygen-rich Envelope of Supergiant Star NML Cygnus Jessica L. Edwards, Lucy M. Ziurys, and Nick J. Woolf The University.
Presented by: Suklima Guha Niyogi Leiden Observatory 13/02/2013 USING INFRARED OBSERVATIONS OF CIRCUMSTELLAR DUST AROUND EVOLVED STARS TO TEST DUST FORMATION.
N159 Region of the LMC: Using Dendrograms to Explore the Relation Between CO and CS Molecular Gas to Star Formation in a Low Metallicity Environment Isha.
CO mass-loss rate of red-supergiants at low metallicity
Possibility of UV observation in Antarctica
Mass-loss rate of Redsupergiants in RSGC2 Presenter: Yuanhao Zhang 张渊皞
Mass Loss from Galactic Bulge AGB stars
Mid-IR spectroscopic observations of
A Study of Accretion Disks Around Young Binary Star Systems
Mikako Matsuura National Astronomical Observatory of Japan
What do we want to learn, and why?
EVN observations of OH maser burst in OH
Presentation transcript:

GRAMS Modeling of Oxygen- Rich Dust around Red Supergiant and AGB Stars in the Large Magellanic Cloud Benjamin Sargent Collaborators: Sundar Srinivasan, Dave Riebel, Martha Boyer, Margaret Meixner March 28, 2012 Space Telescope Science Institute Image: Gordon & SAGE team (Meixner et al. 2006)

Lifecycle of Matter: How much mass is lost from stars? AGB Stars: O-rich and C-rich dust produced RSG Stars: O-rich only

Modeling Evolved Stars Assume a spherical cow … R -2 density drop-off from assumption of constant mass loss Drawing not to scale! R out = 1000*R min assumption

GRAMS: Grid of Red supergiant and AGB ModelS GRAMS computed using 2Dust (Ueta & Meixner 2003) radiative transfer modeling code GRAMS  returns Mass Loss Rate, Luminosity, and Dust Chemistry O-richC-rich T eff (K) Lum (L sun ) – τ 10 (O-rich) τ 11 (C-rich) R min (R star )

Color-Color Diagram O-rich models C-rich models O-rich AGBs C-rich AGBs Extreme AGBs RSGs O-rich (spec) C-rich (spec) X-axis (K-[3.6]) is stellar color, Y-axis ([3.6]-[24]) is overall IR color From Sargent et al 2011

Comparison to Other Work Generally, good agreement, except GRAMS MLRs disagree with G09 for low MLRs GRAMS uses one dust type for all models; G09 used many dust types, but no dependence upon MLR, so dust type not behind factor x6 MLR discrepancy

O-rich AGB Dust Properties SEDs: U, B, V, I from MCPS (Zaritsky et al 1997); J, H, K s from 2MASS (Skrutskie et al 2006), IRAC and MIPS-24 from SAGE Right, SED of oxygen-rich (O-rich) AGB star; 2Dust (Ueta & Meixner 2003) model of O- rich AGB (Sargent et al 2010) But …

One Dust Type Doesn’t Fit All

Isolating Dust Emission SED is fit by GRAMS, star is subtracted Measure centroid of features, continuum slope

Spitzer-IRS Spectroscopic Studies of AGBs and RSGs Average AGB 10μm feature centroid displaced to shorter λ‘s than RSGs’ (Sargent et al, in prep) Similar discrepancy seen between Miras and non-Miras by Marengo et al (2001)

RSG vs AGB Silicates Star- subtracted continuum slope relatively independent of 10 μm silicate feature centroid

RSG vs AGB Silicates, con’t RSG shells have hotter dust, but if continuum slope were affecting centroid, hotter dust would mean shorter- wavelength centroids

Conclusions NASA ADAP grant NNX11AB06G GRAMS model grid useful for determining mass loss from AGB and RSG stars Difference between AGB and RSG average 10 μm feature centroid. Different avg dust optical properties? Silicate feature peak wavelength difference not due to temperature effect on continuum Thank you!

References Asplund, M., et al., 2004, A&A, 417, 751 Bekki, K., & Chiba, M., 2005, MNRAS, 356, 680 Dufour, R. J., et al., 1982, ApJ, 252, 461 Gautschy-Loidl, R., et al., 2004, A&A, 422, 289 Houck, J. R., et al., 2004, ApJS, 154, 18 Kučinskas, A., et al, 2005, A&A, 442, 281 Kučinskas, A., et al, 2006, A&A, 452, 1021 Marengo, M., et al., 2001, MNRAS, 324, 1117 Meixner, M., et al., 2006, AJ, 132, 2268 Ossenkopf, V., et al., 1992, A&A, 261, 567 Pégourié, B., 1988, A&A, 194, 335 Pei et al., 1999, ApJ, 522, 604 Sargent, B. A., et al., 2010, ApJ, 716, 878 Sargent, B. A., et al., 2011, ApJ, 728, 93 Schaefer, B. E., 2008, AJ, 135, 112 Skrutskie, M., et al, 2006, AJ, 131, 1163 Srinivasan, S., et al., 2009, AJ, 137, 4810 Srinivasan, S., et al., 2010, A&A, 524, A49 Srinivasan, S., et al., 2011, A&A, 532, A54 Szewczyk, O., et al., 2009, AJ, 138, 1661 Ueta, T., & Meixner, M., 2003, ApJ, 586, 1338 Zaritsky, D., Harris, J., & Thompson, I., 1997, AJ, 114, 1002 Zubko, V. G., et al., 1996, MNRAS, 282, 1321