Confinement of spin diffusion to single molecular layers in layered organic conductor crystals András Jánossy 1 Ágnes Antal 1 Titusz Fehér 1 Richard Gaál.

Slides:



Advertisements
Similar presentations
A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Advertisements

Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Zero-Phonon Line: transition without creation or destruction of phonons Phonon Wing: at T = 0 K, creation of one or more phonons 7. Optical Spectroscopy.
The “normal” state of layered dichalcogenides Arghya Taraphder Indian Institute of Technology Kharagpur Department of Physics and Centre for Theoretical.
Electron Spin Resonance (ESR) Spectroscopy
Study of Collective Modes in Stripes by Means of RPA E. Kaneshita, M. Ichioka, K. Machida 1. Introduction 3. Collective excitations in stripes Stripes.
SDW Induced Charge Stripe Structure in FeTe
Magnetic field effects on the CDW and SC states in  -(BEDT-TTF) 2 KHg(SCN) 4 Dieter Andres, Sebastian Jakob, Werner Biberacher, Karl Neumaier and Mark.
Schegolev Memorial Symposium Chernogolovka, Russia, October 2009 Organic-Inorganic Layer Salts as Molecular Functional Materials: Multilayers and.
Highlights on Some Experimental Progress of FeSe Xingjiang ZHOU 2014/10/08.
External synchronization Josephson oscillations in intrinsic stack of junctions under microwave irradiation and c-axis magnetic field I.F. Schegolev Memorial.
The electronic structures of 2D atomically uniform thin film S.- J. Tang, T. Miller, and T.-C. Chiang Department of Physics, University of Illinois at.
ECRYS-2008, 27 August 2008 Charge ordering in (EDT-TTFCONMe 2 )Br and o-(Me 2 TTF)Br P. Auban-Senzier, C.Pasquier Laboratoire de Physique des Solides,
Magnetic field effects on the CDW and SC states in  -(BEDT-TTF) 2 KHg(SCN) 4 Dieter Andres, Sebastian Jakob, Werner Biberacher, Karl Neumaier and Mark.
1 Sonia Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis, Tunisia Collaboration N. Belmechri, (LPS, Orsay, France) M. Héritier, (LPS,
UCSD. Tailoring spin interactions in artificial structures Joaquín Fernández-Rossier Work supported by and Spanish Ministry of Education.
2002 London NIRT: Fe 8 EPR linewidth data M S dependence of Gaussian widths is due to D-strainM S dependence of Gaussian widths is due to D-strain Energies.
Coherent Manipulation and Decoherence of S=10 Fe8 Single- Molecule Magnets Susumu Takahashi Physics Department University of California Santa Barbara S.
Normal and superconducting states of  -(ET) 2 X organic superconductors S. Charfi-Kaddour Collaborators : D. Meddeb, S. Haddad, I. Sfar and R. Bennaceur.
Electron Spin as a Probe for Structure Spin angular momentum interacts with external magnetic fields g e  e HS e and nuclear spins I m Hyperfine Interaction.
European Joint PhD Programme, Lisboa, Diagnostics of Fusion Plasmas Spectroscopy Ralph Dux.
Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universit ä t Stuttgart Outline.
Antiferomagnetism and triplet superconductivity in Bechgaard salts
Metamaterial Emergence of novel material properties Ashida Lab Masahiro Yoshii PRL 103, (2009)
Introduction to Single Molecular Magnet
Electron Spin Resonance Spectroscopy
Magnetic properties of a frustrated nickel cluster with a butterfly structure Introduction Crystal structure Magnetic susceptibility High field magnetization.
Mössbauer study of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2 1 Mössbauer Spectroscopy Division, Institute of Physics,
Nonisovalent La substitution in LaySr14-y-xCaxCu24O41: switching the transport from ladders.
M1 Colloquium Presentation Arora Varun 29A13106 (Shimizu Lab) High Pressure Study of Na x TiNCl and CeFe 2.
How does Superconductivity Work? Thomas A. Maier.
Crystal structure, T-P phase diagram and magnetotransport properties of new organic metal Crystal structure, T-P phase diagram and magnetotransport properties.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
N. Yugami, Utsunomiya University, Japan Generation of Short Electromagnetic Wave via Laser Plasma Interaction Experiments US-Japan Workshop on Heavy Ion.
Charge Order-Disorder Phase Transition Detected By EPR in α'-(BEDT-TTF) 2 IBr 2 1 Roman Morgunov, 1 Alexei Dmitriev, 1 Alisa Chernenkaya, 2 Kaoru Yamamoto,
Polar molecules in optical lattices Ryan Barnett Harvard University Mikhail Lukin Harvard University Dmitry Petrov Harvard University Charles Wang Tsing-Hua.
1 光電子分光でプローブする 遷移金属酸化物薄膜の光照射効果 Photo-induced phenomena in transition-metal thin films probed by photoemission spectroscopy T. Mizokawa, J.-Y. Son, J. Quilty,
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
¶ CNISM-Dipartimento di Fisica “A. Volta,” Università di Pavia, Pavia, (Italy) ║ Max Planck Institute for Chemical Physics of Solids, Dresden,
High Pressure study of Bromine Shimizu Lab M2 Hayashi Yuma.
High Pressure study of Bromine
Quantum Confinement in Nanostructures Confined in: 1 Direction: Quantum well (thin film) Two-dimensional electrons 2 Directions: Quantum wire One-dimensional.
István Kézsmárki Budapest University of Technology Giant Directional Optical Anisotropies in the THz regime Spinwave Excitations in Multiferroics Collegues.
Anisotropic Superconductivity in  -(BDA-TTP) 2 SbF 6 : STM Spectroscopy K. Nomura Department of Physics, Hokkaido University, Japan ECRYS-2008, Cargese.
Summary of Collaborative Investigation – Na 5 ACu 4 (AsO 4 ) 4 Cl 2 (A = Rb, Cs) Jeffrey Clayhold, Miami University, USA Shiou-Jyh Hwu, Clemson University,
Superconductivity in HgBa 2 Ca m-1 Cu m O 2m+2+δ (m=1,2, and 3) under quasihydrostatic pressures L. Gao et al., Phys. Rev. B 50, 4260 (1994) C. Ambrosch-Draxl.
Introduction to Molecular Magnets Jason T. Haraldsen Advanced Solid State II 4/17/2007.
Charge frustration and novel electron-lattice coupled phase transition in molecular conductor DI-DCNQI 2 Ag Charge frustration and novel electron-lattice.
Spatially resolved quasiparticle tunneling spectroscopic studies of cuprate and iron-based high-temperature superconductors Nai-Chang Yeh, California Institute.
From quasi-2D metal with ferromagnetic bilayers to Mott insulator with G-type antiferromagnetic order in Ca 3 (Ru 1−x Ti x ) 2 O 7 Zhiqiang Mao, Tulane.
M. Ueda, T. Yamasaki, and S. Maegawa Kyoto University Magnetic resonance of Fe8 at low temperatures in the transverse field.
Superconductivity with T c up to 4.5 K 3d 6 3d 5 Crystal field splitting Low-spin state:
1. Chapter 9 Ion Cyclotron Resonance 2. Key features are the relation of the resonate frequency to q/m and tuneability with B 3. It predicts experimental.
Nuclear magnetic resonance study of organic metals Russell W. Giannetta, University of Illinois at Urbana-Champaign, DMR Our lab uses nuclear magnetic.
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
SPIN EXCITATIONS IN La 2 CuO 4 : CONSISTENT DESCRIPTION BY INCLUSION OF RING EXCHANGE A.A.Katanin a,b and A.P.Kampf a a Institut für Physik, Universität.
Magnetism of the regular and excess iron in Fe1+xTe
May, 21, 2014 Long, 140 ns electron spin lifetime in chemically synthesized graphene and related nanostructures and its strong interplay between the surface.
Igor Lukyanchuk Amiens University
Single crystal growth of Heisenberg spin ladder and spin chain Single crystal growth of Heisenberg spin ladder and spin chain Bingying Pan, Weinan Dong,
Phase Diagram of Ruthenate: Ca2-xSrxRuO4 (CSRO) (0. 0<x<2
Stephen Hill, Rachel Edwards Nuria Aliaga-Alcalde and George Christou
DEMONSTRATION EXPERIMENTS
at the University of Alabama
Ion-beam, photon and hyperfine methods in nano-structured materials
第32回応用物理学科セミナー 日時: 2月13日(月) 16:00 – 17:30 場所:葛飾キャンパス研究棟8F第2セミナー室
Exotic magnetic states in two-dimensional organic superconductors
Presentation transcript:

Confinement of spin diffusion to single molecular layers in layered organic conductor crystals András Jánossy 1 Ágnes Antal 1 Titusz Fehér 1 Richard Gaál 2 Bálint Náfrádi 1,2 László Forró 2 Crystal growth: Erzsébet Tátrainé Szekeres 1, Ferenc Fülöp 1 special thanks to Natasha Kushch 1 Budapest University of Technology and Economics, Institute of Physics 2 Ecole Polytechnique Federale de Lausanne I.F. Schegolev Memorial Conference “Low-Dimensional Metallic and Superconducting Systems” October 11–16, 2009, Chernogolovka, Russia

Quasi 2D molecular layered compounds: Independent currents in each layer? Uncoupled magnetic order in each layer?  A  or M A  B  or M B A B A B

 ac =0°  ac =90°  - ET 2 -X, layered organic crystal X = Cu[N(CN) 2 ]Cl, Br 2D polymer c a b A B 1 hole / ET 2 dimer X

c a b A B X t II  ac =45° tt t   0.1 meV t //  100 meV  - ET 2 -X, layered organic crystal X = Cu[N(CN) 2 ]Cl, Br 2D polymer

Phase diagram  -(BEDT-TTF) 2 CuN(CN) 2 Cl, Br 5110 Mott transition

Goal: Determine: 1. interlayer magnetic interaction in antiferromagnet 2. interlayer electron hopping frequency,  in metallic phase Method: high frequency ESR 1. Antiferromagnetic resonance, AFMR 2. Conduction electron spin resonance, CESR

9.4 GHz BRUKER E GHz, Lausanne GHz, Budapest High frequency ESR spectrometer high resolution same sensitivity 0-12 kbar pressure

Phase diagram  -(BEDT-TTF) 2 CuN(CN) 2 Cl, Br ET-Cl ET-Br 2. Conduction electron spin resonance Antiferromagnetic resonance

D y z B M1M1 M2M2 F = H Zeeman + H exchange + H DM + H anisotropy F = - B(M 1 + M 2 ) + M 1 M 2 + D(M 1 x M 2 ) + ½K b (M 1y 2 +M 2y 2 )+½K(M 1z 2 + M 2z 2 ) Antiferromagnetic resonance 2 magnetizations  2 oscillation modes First AFMR work: Ohta et al, Synth. Met, 86, (1997),

DADA M A1 M A2 DBDB M B2 M B1 Magnetic structure D. F. Smith and C. P. Slichter, Phys. Rev. Let. 93, , 2004 A B AB =? J = 600 T F = F A + F B + AB M A M B

Antiferromagnetic resonance calculation  -(BEDT-TTF) 2 CuN(CN) 2 Cl 4 magnetizations : 4 modes: ω αA, ω  A ω αB, ω  A F = F A + F B + AB M A M B Antal et al., Phys. Rev. Lett. 102, (2009) GHz ωω ωω Magnetic field [T] Frequency [GHz] B // b

Antiferromagnetic resonance experiment  -(BEDT-TTF) 2 CuN(CN) 2 Cl 4 magnetizations : 4 modes: ω αA, ω  A ω αB, ω  A F = F A + F B + AB M A M B AFMR, GHz, 4 K, H//b Antal et al., Phys. Rev. Lett. 102, (2009)

A B A and B modes do not cross! intra-layer exchange: J = 600 T inter-layer coupling: AB =1x T AB = AB exchange + AB dipole (same order of magnitude) AB Antiferromagnetic resonance measured and calculated b a B, magnetic field  ab Antal et al., Phys. Rev. Lett. 102, (2009)

ET-Cl ET-Br Conduction electron spin resonance 5110 Conduction electron spin resonance in the metallic phase

 A B 2D spin diffusion  interlayer hopping rate T 1 spin life time  < 1/T 1 2D spin diffusion

Expectation (300 K) : ħ / t  ≈ s,  // ≈ s T 1 ≈ s  ≈ 2x10 8 s < 1/T 1 2D spin diffusion 2D spin diffusion  v F  // = 1 nm  spin ≈ 250 nm A B  = (2t  2  // ) / ħ 2 blocked by short  // N. Kumar, A. M. Jayannavar, Phys. Rev. B 45, 5001 (1992) tt

A B A = g A  B B/h B = g B  B B/h  Measurement of interlayer hopping ESR of 2 coupled spins g A ≠ g B

A B A B A B ESR  < I A – B I  ≈ I A – B I  > I A – B I Measurement of interlayer hopping interlayer hopping frequency

B A 2 resolved ESR lines P=0, T= K A B  < I A – B I  < 3 x 10 8 Hz  Ref. Antal et al., Phys. Rev. Lett. 102, (2009)

ESR g- factor anisotropy K  -(BEDT-TTF) 2 CuN(CN) 2 Cl A B b a B, magnetic field   Antal et al., Phys. Rev. Lett. 102, (2009)

A B A B A B ESR  < I A – B I  ≈ I A – B I  > I A – B I Measurement of interlayer hopping pressure interlayer hopping frequency

 -ET 2 -Cl  < I A – B I  ≈ I A – B I  > I A – B I Measurement of interlayer hopping Ref. Motional narrowing under pressure 210 GHz T=250 K, B in (a,b) plane Instr. pressure

B A Measurement of interlayer hopping Motional narrowing under pressure 420 GHz T=250 K,  = I A – B I = 1.0 x10 9 s -1 ESR spectral intensity

 = (2t  2  // )/ħ 2 blocked interlayer hopping     // parallel d.c. conductivity pressure dependence T=250 K Measurement of interlayer hopping

 (P, T) interlayer hopping frequency ET-Cl ET-Br x10 8 s -1 5x10 9 s -1 Summary

Measurement of interlayer hopping temperature dependence GHz P=0 temperature Interlayer hopping frequency antiferromagnet metal

temperature dependence GHz P=4 kbar Measurement of interlayer hopping temperature Interlayer hopping frequency metal superconductor

Measurement 250 K, P=0 :  ≈ 2x10 8 s -1 < 1/T 1 2D spin diffusion Electrons are confined to single molecular layers in regions of 350 nm radius  // = s t  = 0.1 meV meV 2D spin diffusion  = (2t  2  // ) / ħ 2 blocked by short  //  v F  // = 1 nm A B  confinement ≈ 350 nm

t   0.1 meV t //  100 meV Anisotropy of resistivity H. Ito et al J. Phys. Soc. Japan (1996) -   /  // nearly independent of T -    100  cm -   /  // 

 = (2t  2  // ) / ħ 2 blocking of interlayer tunnelling    1 /   1 /  //,  //  1 /  //   /  //  ( t // / t  ) 2 (a/d) 2 independent of T H. Ito et al J. Phys. Soc. Japan (1996) Anisotropy of resistivity Buravov et al. J. Phys. I (1992)  -(BEDT-TTF) 2 CuN(CN) 2 Br  -(BEDT-TTF) 2 CuN(CN) 2 Cl

Perpendicular dc resistivity:   = 1/( e 2 g(E F )  d) g(E F ) = two dimensinal density of states d: interlayer distance  -(BEDT-TTF) 2 CuN(CN) 2 Cl at 250 K, P=0: Calculated:   =  cm Typical measured: 100  cm

t   0.1 meV, t //  100 meV   /  //  ( t // / t  ) 2 (a/d) 2 expected anisotropy:   /  //  10 6 measured:   /  //    : dc resistivity and DoS agree with CESR  // : measured is much less than calculated ?? unsolved Anisotropy of resistivity

 -(BEDT-TTF) 2 [Mn 2 Cl 5 (H 2 O) 5 ] † Zorina et al CrystEngComm, 2009, 11, 2102 Mn Layer A Mn Layer B

ESR spectrum in the a* direction at 420 GHz and 300 K. Resolved lines correspond to the Mn 2+ ions and the ET molecules. ESR in (ET) 2 CuMn[N(CN) 2 ] 4, a radical cation salt with quasi two dimensional magnetic layers in a three dimensional polymeric structure K. L. Nagy 1, B. Náfrádi 2, N. D. Kushch 3, E. B. Yagubskii 3, Eberhardt Herdtweck 4, T. Fehér 1, L. F. Kiss 5, L. Forró 2, A. Jánossy 1 Phys. Rev. B (2009)

Me-3.5-DIP)[Ni(dmit)2]2 PS3-7 Yamamoto bi functional conductor PHYSICAL REVIEW B 77, R 2008 PS3-10 Hazama transport under pressure

 (P, T) interlayer hopping frequency ET-Cl ET-Br x10 8 s -1 5x10 9 s -1 Summary

Antiferromagnet AB =  exchange +  AB dipole same order of magnitude Maybe AB changes sign at Mott transition ? AB A B

 -ET 2 -Cl  1 < I A – B I  ≈ I A – B I  > I A – B I Measurement of interlayer hopping Ref. Motional narrowing under pressure 420 GHz T=250 K, B in (a,b) plane Instr.

A ωω ωω „A” layers only B  ab Antiferromagnetic resonance Calculated B in (a,b) plane

A B Independent A and B layers A and B modes cross! Antiferromagnetic resonance Calculated B in (a,b) plane

Ohta et al, Synth. Met, 86, (1997), Antiferromagnetic resonance  -(BEDT-TTF) 2 CuN(CN) 2 Cl A. Antal et al 2008 (present work) B // b

 ’-(BEDT-TTF) 2 CuN(CN) 2 Cl resistivity Zverev et al, Phys. Rev. B. 74, (2006)