Physique des Lasers, Atomes et Molécules

Slides:



Advertisements
Similar presentations
Fourier transform microwave spectrum of isobutyl mercaptan Kanagawa Institute of Technology 1 and The Graduate University for Advanced Studies 2 Yugo Tanaka,
Advertisements

High Resolution Laser Induced Fluorescence Spectroscopic Study of RuF Timothy C. Steimle, Wilton L. Virgo Tongmei Ma The 60 th International Symposium.
Spectra, Structures, and Dynamics of Weakly Bound Clusters from Dimers to Nonamers Wolfgang Jäger Department of Chemistry, University of Alberta.
Microwave spectroscopy of 2-furancarboxylic acid Roman A. Motiyenko, Manuel Goubet, Laurent Margulès, Georges Wlodarczak PhLAM Laboratory, University Lille.
Microwave spectrum of furfuryl alcohol Roman A. Motiyenko, Manuel Goubet, Thérèse R. Huet, Laurent Margulès, Georges Wlodarczak PhLAM Laboratory, University.
HIGH RESOLUTION INFRARED SPECTROSCOPY OF N 2 O-C 4 H 2 AND CS 2 −C 2 D 2 DIMERS MAHDI YOUSEFI S. SHEYBANI-DELOUI JALAL NOROOZ OLIAEE BOB MCKELLAR NASSER.
Microwave Rotational Spectroscopy
Galen Sedo, Jamie L. Doran, Shenghai Wu, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Determination of the Barrier to.
OSU International Symposium on Molecular Spectroscopy meeting, June 19-23, in Columbus, Ohio, USA Microwave spectra of 3-amino-2-propenenitrile (H 2 N-CH=CH-CN),
Interaction of the hyperfine coupling and the internal rotation in methylformate M. TUDORIE, D. JEGOUSO, G. SEDES, T. R. HUET, Laboratoire de Physique.
Rotational Spectra of Methylene Cyclobutane and Argon-Methylene Cyclobutane Wei Lin, Jovan Gayle Wallace Pringle, Stewart E. Novick Department of Chemistry.
An Acoustic Demonstration Model for CW and Pulsed Spectroscopy Experiments Torben Starck, Heinrich Mäder Institut für Physikalische Chemie Christian-Albrechts-Universität.
Chirality of and gear motion in isopropyl methyl sulfide: Fourier transform microwave study Yoshiyuki Kawashima, Keisuke Sakieda, and Eizi Hirota* Kanagawa.
Stark Study of the F 4     X 4  7/2 (1,0) band of FeH Jinhai Chen and Timothy C. Steimle Dept. of Chemistry& BioChem, Arizona State University,
11 The THz spectrum of GlycolAldehyde M. Goubet, T.R. Huet, I. Haykal, L. Margulès PhLAM, CNRS – Université de Lille 1 O. Pirali, P. Roy AILES beamline,
High Resolution Measurements and Electronic Structure Calculations of a Diazanaphthalene: [1,6]-naphthyridine. Sébastien Gruet, Manuel Goubet, Olivier.
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
Maria Eugenia Sanz, Carlos Cabezas, Santiago Mata, José L. Alonso The Rotational Spectrum of Tryptophan.
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
Zeinab. T. Dehghani, A. Mizoguchi, H. Kanamori Department of Physics, Tokyo Institute of Technology Millimeter-Wave Spectroscopy of S 2 Cl 2 : A Candidate.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
Microwave Spectra and Structures of H 2 S-CuCl and H 2 O-CuCl Nicholas R. Walker, Felicity J. Roberts, Susanna L. Stephens, David Wheatley, Anthony C.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
1 Ab initio and Infrared Studies of Carbon Dioxide Containing Complex Zheng Su and Yunjie Xu Department of Chemistry, University of Alberta, Edmonton,
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
Fang Wang & Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA The 65 th International Symposium on Molecular Spectroscopy,
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Rotational spectroscopy of two telluric compounds : vinyl- and ethyl-tellurols R.A. MOTIYENKO, L. MARGULES, M. GOUBET Laboratoire PhLAM, CNRS UMR 8523,
66th OSU International symposium on molecular spectroscopy
Equilibrium Molecular Structure and Spectroscopic Parameters of Methyl Carbamate J. Demaison, A. G. Császár, V. Szalay, I. Kleiner, H. Møllendal.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
A LABORATORY AND THEORETICAL INVESTIGATION OF THE SILICON SULFUR MOLECULES H 2 SiS AND Si 2 S. MICHAEL C. MCCARTHY 1, PATRICK THADDEUS 1, HARSHAL GUPTA.
HIGH RESOLUTION SPECTROSCOPY OF THE TWO LOWEST VIBRATIONAL STATES OF QUINOLINE C 9 H 7 N O. PIRALI, Z. KISIEL, M. GOUBET, S. GRUET, M.-A. MARTIN-DRUMEL,
DIODE-LASER AND FOURIER-TRANSFORM SPECTROSCOPY OF 14 NH 3 AND 15 NH 3 IN THE NEAR-INFRARED (1.5 µm) Nofal IBRAHIM, Pascale CHELIN, Johannes ORPHAL Laboratoire.
Conformational Flexibility in Hydrated Sugars: The Glycolaldehyde-Water Complex Juan-Ramon Aviles-Moreno, Jean Demaison and Thérèse R. Huet Laboratoire.
65th Ohio State University Symposium on Molecular Spectroscopy June 21–25, 2010 Stark spectrum simulation of X 2 Y 4 asymmetric molecules: application.
THE MICROWAVE STUDIES OF GUAIACOL (2-METHOXYPHENOL), ITS ISOTOPOLOGUES & VAN DER WAALS COMPLEXES Ranil M. Gurusinghe, Ashley Fox and Michael J. Tubergen,
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based Fourier transform microwave spectroscopic study Javix Thomas a, Agapito Serrato.
The Ohio State University International Symposium on Molecular Spectroscopy 68th Meeting - - June 17-21, 2013 Microwave Spectrum of Hexafluoroisopropanol,
Optical Stark Spectroscopy and Hyperfine study of Gold Chrolride (AuCl) Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy.
0 ipc kiel The rotational spectrum of the pyrrole-ammonia complex Heinrich Mäder, Christian Rensing and Friedrich Temps Institut für Physikalische Chemie.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
Rotational Spectroscopic Investigations Of CH 4 ---H 2 S Complex Aiswarya Lakshmi P. and E. Arunan Inorganic and Physical Chemistry Indian Institute of.
Broadband Microwave Spectroscopy to Study the Structure of Odorant Molecules and of Complexes in the Gas Phase Sabrina Zinn, Chris Medcraft, Thomas Betz,
ERYTHROSE AB INITIO CHARACTERIZATION OF THE STABLE CONFORMERS OF C 4 SUGARS: ERYTHROSE, ERYTHRULOSE AND THREOSE Juan Ramon AVILES MORENO, D. PETITPREZ.
High Resolution Electronic Spectroscopy of 9-Fluorenemethanol (9FM) in the Gas Phase Diane M. Mitchell, James A.J. Fitzpatrick and David W. Pratt Department.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Microwave Spectroscopic Investigations of the Xe-H 2 O and Xe-(H 2 O) 2 van der Waals Complexes Qing Wen and Wolfgang Jäger Department of Chemistry, University.
 Small molecules forming the elementary blocks of biomolecules: amino acids, small peptides, nucleic acids, sugars… Can serve as validation tools relatively.
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
Microwave and infrared spectra of urethane
72nd International Symposium on Molecular Spectroscopy (ISMS 2017)
Carlos Cabezas and Yasuki Endo
MICROWAVE SPECTROSCOPY OF 2-PENTANONE
IMPACT FT-MW Spectroscopy of Organic Rings: Investigation of the
THE MILLIMETER-WAVE SPECTRUM OF METHACROLEIN
A STUDY OF THE FORMAMIDE-(H2O)3 COMPLEX BY MICROWAVE SPECTROSCOPY
Microwave spectra of 1- and 2-bromobutane
THE STRUCTURE OF PHENYLGLYCINOL
Fourier transform microwave spectra of n-butanol and isobutanol
Fourier Transform Infrared Spectral
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
The Rotational Spectrum and Conformational Structures of Methyl Valerate LAM NGUYEN Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA)
Elias M. NEEMAN and Thérèse R. HUET
Presentation transcript:

Physique des Lasers, Atomes et Molécules UMR 8523 CNRS – Université Lille 1, 59655 Villeneuve d’Ascq Cedex, France 60th OSU International Symposium on Molecular Spectroscopy June 20-24, 2005 The urea-water complex observed by jet cooled Fourier-transform microwave spectroscopy and studied by ab initio calculations. J.-R. AVILES-MORENO, A. CUISSET, T. DELEPORTE, T.R. HUET, D. PETITPREZ.

Content Motivations: Urea: history and structure Urea-water complex Ab initio structure of the Urea-water complex Experimental set-up: MB-MWFTS Experimental spectrum: Lines with H2O Lines with D2O Determination of a first experimental structure Conclusions and outlook

Urea: history and structure (NH2)2C=O One of the Nature’s simplest biomolecule. A simplest diamide with 3 coordination sites. Important role in pharmaceutical chemistry Powerfull protein denaturing agent Anti-viral agent b a

Urea: history and structure (NH2)2C=O b a Conformer Plane C2v In the solid phase : planar a (C2v symmetry), intensive network of H-bonds In the gas phase : nonplanar and relatively floppy microwave spectra b ab initio calculations MP2 / 6-311++G(d,p) most stable conformer : anti form 1 Conformer Anti C2 2 Conformer Syn Cs b a a E/ kJ/mol 148 192 180 5 kJ/mol a (°) 2 1 a A S. Swaminathan et al, Acta Crystallogr., Sect B : struct. Sci. 40, 398, (1984) b P. D. Godfrey, R. D. Brown and A. N. Hunter, J. Mol. Struct. 413-414, 405, (1997)

UREA - WATER COMPLEX : motivation of the work b 1 Conformer H11 Anti Cs To study the micro-solvation process of bio-molecules : possible bridge between the gas phase and the liquid phase To understand the hydrogen bond formation. Possible comparison between physico-chemical data coming from experiment and ab initio calculations.

UREA - WATER COMPLEX : Ab initio structure Similar to formamide-water: F.J. Lovas et al J. Chem. Phys. 88(2) 722-729(1988) a b 1.85 Å 2.09 Å 1 3 0.7 3.6 130 180 230 2 Dihedral angle H11-O10-O2-C1 / ° E/ kJ/mol P.-O. Astrand, A. Wallqvist, G. Karlström, J. Chem. Phys. 100 (1994) 1262. Ab initio calculations at the B3LYP / aug-cc-pVTZ level of theory

Experimental set-up: MB-MWFTS Spectra recorded with a pulsed-nozzle MB-MWFTS in the 6-20 GHz frequency range. Optimization of the signal : T(K), carrier gas and pressure Heated nozzle T= 363-403 K Mirror Inside resonator Carrier gas P= 2-5 bar Carrier gas + H2O Urea powder H2O 40 mm Teflon

Experimental spectra Large survey scan in the 6-20 GHz frequency range with a mixture of : (14NH2)2 C=O + H2O (15NH2)2 C=O + H2O (14NH2)2 C=O + D2O (15NH2)2 C=O + D2O 4 strong lines around 12 GHz which can be identified as the Jka,kc=111-000 b-type transitions. Other lines around 17 GHz do not match with the urea-water complex (Jka,kc=212-101 transition for example).

Experimental spectra: Lines with H2O 14NH2CO14NH2– H2O 15NH2CO15NH2 – H2O 0.2 MHz 3.0 MHz 111 000 111000 ~ 300MHz 15NH2CO15NH2 111 000 14NH2CO14NH2 111000 Hyperfine structure Splitting ~ 300MHz T°C = 115 °C carrier gas : Ne at a total pressure of 3 bars Tests : with and without water ; different carrier gases (Ne, Ar, He)

Experimental spectra: Lines with D2O 0.2 MHz 3.0 MHz 14NH2CO14NH2– D2O 15NH2CO15NH2– D2O 111000 ~ 270 MHz MHz 14NH2CO14NH2– H2O 15NH2CO15NH2 – H2O 0.2 MHz 3.0 MHz 111 000 111000 ~ 300MHz T°C = 115 °C carrier gas : Ne at a total pressure of 3 bars Tests : with and without water ; different carrier gases (Ne, Ar, He)

Determination of a first experimental structure Calculation of the water molecule’s cartesian coordinates in the principal inertia axis of urea as a function of 2 internal coordinates (ρ and φ). Determination of the complex new inertia tensor, and diagonalisation. Calculations of the A, B and C rotational constants for each value of ρ and φ (-40° < ρ < 40° by step of 1° and -90° < φ < 90° by step of 1° ) Comparison between (A+C)calc and (A+C)obs

Determination of a first experimental structure H-bond length fixed to 1.9 Å a b ρ φ 2 internal rotations for H2O : ρ : around the 2O-5H axis φ : rotation of the 11H atom around the 9H-10O bond principal inertia axis of urea

Determination of a first experimental structure = | (A+C)calcd- (A+C)obsd | < 10 MHz for 47° < ρ <50° and 40°< φ <70° 14N14N - H2O φ (°) ρ (°) D (MHz)

Determination of a first experimental structure (A+C)calc (A+C)obs ρ = 47° φ = 55° 14N14N - H2O 12285 15N15N - H2O 11987 11977 ρ = 49° 14N14N - D2O 11770 11741 15N15N - D2O 11489 11475 r1=1.87Å r2=1.87Å =90°  * Fixed value

Conclusions and outlook First experimental observation of the urea-water complex. Searching for more urea-water complex lines. Possibility of a large amplitude motion of the H11 atom. Change of the H-bond length when going from H2O to D2O. In progress: analysis of the hyperfine structure

Experimental set-up: MB-MWFTS n  n0 t detection source polar gas e Molecules n0 n Source of microwave pulse (2-20 GHz) Matter-light interaction Inside a Pérot-Fabry resonator Polarization of the polar molecules ; Rotational cooling Detection and recording of the signal Emitted by the molecules As a function of time Fourier transform of the transient signal  Frequency analysis Application rule : maximum polarization for a p/2 pulse, i.e. Physical parameters : m : permanent electric dipole moment e : amplitude of the microwave field t : length of the microwave pulse

Experimental set-up: MB-MWFTS Gas mixture Vacuum-tight rotation transition and step by step motor Gaussian envelop (Ws= 42 mm at 12 GHz) MW pulse detection pump 600 mm<d< 650 mm R=800 mm Resonant cavity and pulsed supersonic beam Spectral range : 6 – 20 GHz Sensitivity : 10-11 cm-1 Resolution : 10 kHz Accuracy : 2.4 kHz Rot. temp. :  4 K Pressures : Carrier gas: 1-3 bars Molecules: 10-2 bar Secondary pumping Labview interface Scan : 1GHz/12h Heated nozzle 363 K Benzamide powder 1.5 bar Ar Carrier gaz Cavity

Transition rotationnelle Dédoublement Doppler Interrupteur rapide t Impulsion microonde de 1 à 2 ms Synthétiseur 2-20 GHz Cavité PF Amplificateur A/D FI = 30 MHz Mélangeur Filtre passe-bande Amplificateur RF Convertisseur A/D ns+30 MHz Transition rotationnelle Dédoublement Doppler