A Practical Introduction to Stellar Nonradial Oscillations

Slides:



Advertisements
Similar presentations
Surface Waves and Free Oscillations
Advertisements

Surface Waves and Free Oscillations
Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.
Lars Bildsten Kavli Institute for Theoretical Physics University of California Santa Barbara Insights and Challenges in Stellar Evolution.
Pulsating Variables. Cepheid Variables Discovered by J. Goodricke (1784): Prototype:  Cephei Light curve of  Cephei.
Chapter (6) Introduction to Quantum Mechanics.  is a single valued function, continuous, and finite every where.
Observational properties of pulsating subdwarf B stars. Mike Reed Missouri State University With help from many, including Andrzej Baran, Staszek Zola,
A unified normal modes approach to dynamic tides and its application to rotating stars with realistic structure P. B. Ivanov and S. V. Chernov, PN Lebedev.
Shear Instability Viewed as Interaction between Counter-propagating Waves John Methven, University of Reading Eyal Heifetz, Tel Aviv University Brian Hoskins,
Thanks to Henrietta Swan Leavitt, Harvard CfA November 5th Hommage to Henrietta Leavitt from the CoRoT Team Annie BAGLIN, Merième CHADID,
Astroseismology of a  -Cephei star Nick Cowan April 2006 Nick Cowan April 2006.
1 Influence of the Convective Flux Perturbation on the Stellar Oscillations: δ Scuti and γ Doradus cases A. Grigahcène, M-A. Dupret, R. Garrido, M. Gabriel.
Fluid Mechanics Overview GasLiquidsStaticsDynamics Air, He, Ar, N 2, etc. Water, Oils, Alcohols, etc. Viscous/Inviscid Steady/Unsteady Compressible/ Incompressible.
Wavelength flux Spectral energy distributions of bright stars can be used to derive effective temperatures Ay 123 Lecture I - Physical Properties.
1 Shu-Hua Yang ( 杨书华 ) Hua Zhong Normal University The role of r-mode damping in the thermal evoltion of neutron stars.
ASTEROSEISMOLOGY CoRoT session, January 13, 2007 Jadwiga Daszyńska-Daszkiewicz Instytut Astronomiczny, Uniwersytet Wrocławski.
Links Between Pulsations & Line-Driven Mass Loss in Massive Stars Stan Owocki Bartol Research Institute University of Delaware IAU Colloquium #185 Leuven,
November 22, 2005 Physical Pendulum Pivot disk about a point a distance h from the center; What is the period T of oscillation? h mg   Find  (t) for.
February 14, 2006 Astronomy Chapter 18: Celestial Distances A Galaxy 150 Million Light Years From Earth.
Variable Stars: Pulsation, Evolution and applications to Cosmology Shashi M. Kanbur, June 2007.
Applied NWP What is the foundation of computer weather forecast models? (D&VK Chapter 2)
1 07/10/ Séminaire du LUTh - Jérôme Guilet Asymmetric explosions of Core collapse supernovae Jérôme Guilet En collaboration avec Thierry Foglizzo,
Lec 3. System Modeling Transfer Function Model
§ Separation of spherical variables: zonal harmonics Christopher Crawford PHY
Main Sequence Solar-type stars Mira LPVs  Cepheids Irregular LPVs DBVs PNNVs Instability Strip Classical Cepheids RR Lyrae  Scutis VW Virginis ZZ Ceti.
Simulated surface wave arrivals near Antipode Get me out of here, faaaaaassstttt…..!!
Geology 5640/6640 Introduction to Seismology 20 Mar 2015 © A.R. Lowry 2015 Last time: Love Waves; Group & Phase Velocity At shorter periods, Love waves.
Evidence of Stellar Evolution
Excitation and damping of oscillation modes in red-giant stars Marc-Antoine Dupret, Université de Liège, Belgium Workshop Red giants as probes of the structure.
Qingkang Li Department of Astronomy Beijing Normal University The Third Workshop of SONG, April, 2010 Disks of Be Stars & Their Pulsations &
An Introduction to Helioseismology (Global) 2008 Solar Physics Summer School June 16-20, Sacramento Peak Observatory, Sunspot, NM.
Observing Stellar Evolution 1. How can we see stellar evolution in action? 1. Stellar Clusters, a group of coeval stars, I.e. all born at the same time,
asteroseismology of pulsating sdB stars
Internal rotation: tools of seismological analysis and prospects for asteroseismology Michael Thompson University of Sheffield
EART 160: Planetary Science 20 February Last Time Elastic Flexure Paper Discussion – Titan Atmosphere –Tobie et al., 2005 Planetary Atmospheres.
Wave chaos and regular frequency patterns in rapidly rotating stars F. Lignières Laboratoire d’Astrophysique de Toulouse et Tarbes - France in collaboration.
A Practical Introduction to Stellar Nonradial Oscillations (i) Rich Townsend University of Delaware ESO Chile ̶ November 2006 TexPoint fonts used in EMF.
Extrasolar Planets and Stellar Oscillations in K Giant Stars Notes can be downloaded from
Magnetic fields generation in the core of pulsars Luca Bonanno Bordeaux, 15/11/2010 Goethe Universität – Frankfurt am Main.
Models of the 5-Minute Oscillation & their Excitation Bob Stein – Michigan State U. 1.
Quantum mechanics unit 2
LIGHT AND RADIAL VELOCITY VARIATIONS DUE TO LOW FREQUENCY OSCILLATIONS IN ROTATING STARS Jadwiga Daszy ń ska-Daszkiewicz Instytut Astronomiczny, Uniwersytet.
Global Helioseismology NSO/LPL Summer School June 11-15, 2007
Asteroseismology A brief Introduction
Jim Fuller Caltech/KITP ACOUSTIC OSCILLATIONS IN RED GIANTS.
Standing Waves Reminder Confined waves can interfere with their reflections Easy to see in one and two dimensions –Spring and slinky –Water surface –Membrane.
Ay 123 Lecture I - Physical Properties 10  as = 10% 10  as/yr = ESA Gaia mission: a revolution in 3-D mapping of our Galaxy.
EVAT 554 OCEAN-ATMOSPHERE DYNAMICS TIME-DEPENDENT DYNAMICS; WAVE DISTURBANCES LECTURE 21.
Transverse optical mode in a 1-D chain J. Goree, B. Liu & K. Avinash.
Pablo Barberis Blostein y Marc Bienert
On the mechanism of eastward-propagation of super cloud clusters (SCCs) over the equator – Impact of precipitation activities on climate of East Asia –
November, 2008 Bermuda ITW Numerical Simulation of Infrasound Propagation, including Wind, Attenuation, Gravity and Non-linearity Catherine de Groot-Hedlin.
 Introduction to Stellar Pulsations  RR Lyrae Stars and the Blazhko Effect  Part I of the Thesis Work:  Temporal Behaviour of the RR Lyrae Data 
Variable Stars & Distance The “Standard Candle”.
Sounding the cores of stars by gravity-mode asteroseismology Valerie Van Grootel (Institut d’Astrophysique, University of Liege, Belgium) Main collaborators.
Isola d’Elba 28/05/2006 Non linear effects in pulsations of compact stars Andrea Passamonti Andrea Passamonti Aristotle University of Thessaloniki VESF.
Lars Bildsten Kavli Institute for Theoretical Physics University of California Santa Barbara Hearing the Stars! Happy Birthday David!!
Pulsating Variable Stars. Pulsating Variable Stars Overview History of discovery What are pulsating variable stars? Why are they important? Any recent.
Lecture 9: Time-Response Characteristics (II) TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A AAA A A A A A A A.
Solar-like Oscillations in other Stars or The only way to test directly stellar structure theory I.Scaling Relations II. Results.
Physical conditions in astrophysics Axel Brandenburg (Nordita/Stockholm) Kemel+12 Ilonidis+11Brandenburg+11Warnecke+11 Käpylä+12.
From temporal spectra to stellar interiors (and back)
A Pulsational Mechanism for Producing Keplerian Disks around Rapidly Rotating Stars Steven R. Cranmer Harvard-Smithsonian CfA.
12/6/2018 Course Overview.
Prof. dr. A. Achterberg, Astronomical Dept
Theory of solar and stellar oscillations - I
Ay 123 Lecture 9 - Helioseismology
Oscillations in Accretion Discs around Black Holes
Transition in Energy Spectrum for Forced Stratified Turbulence
ASTEROSEISMOLOGY OF LATE STAGES OF STELLAR EVOLUTION
Presentation transcript:

A Practical Introduction to Stellar Nonradial Oscillations Rich Townsend University of Delaware ESO Chile ̶ November 2006 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAA

Objectives What? Where? Why? How?

Overview Historical Perspective Waves in stars Global oscillations Radial pulsators Nonradial pulsators Waves in stars Global oscillations Surface variations Rotation effects Driving mechanisms

 Cephei John Goodricke (1784)

Cepheids in the HR Diagram

Henrietta Leavitt (1868-1921) SMC Stars: Mv = -2.76 log(P) - 1.4

Period-Luminosity Relation

Origin of the P-L Relation Constant L evolution L / M3 Constant T instability L / R2 Dynamical timescale  / R3/2 M-1/2 Combine:  / L0.6 Compare:  / L0.9

Extragalactic Distance Scale

Paul Ledoux (1914-1988)  mechanism Secular instability Semiconvection Nonradial pulsation

 Canis Majoris Struve (1950): P1 = 0.25002 d P2 = 0.25130 d

Analogy: Hydrogen Spectrum

Nonradial Oscillations

Global Standing Waves Angular Radial

NRO’s in the HR Diagram

Types of Wave Acoustic (pressure) Gravity (buoyancy)

Linearized Hydrodynamics ’/t + r¢(v’) = 0 v’/t = -rp’ - g’  p’/ t + v’¢rp = a2(’/ t + v’¢r)

Wave Equation Eliminate ’ and p’: 2v’/t2 = a2r(r¢v’) + (a2r¢v’)rln 1 + (1 - 1)(r¢v’)g + r(g¢v’) 1 = (ln p/ln )s = a2/p

Waves in Isothermal Atmosphere 2v’/t2 = a2r(r¢v’) + ( - 1)(r¢v’)g + r(g¢v’) Trial solutions: v’ / exp[i(k¢r - t) + z/2H] E = ½  |v’|2 = ½ 0 exp[-z/H] v0’2 exp[z/H] = ½ 0 v0’2

Dispersion Relation 4 - [ac2 + a2 |k|2] 2 + N2 a2 kh2 = 0 Acoustic cutoff frequency : ac = /2 g/a Buoyancy frequency : N = (-1)1/2 g/a |k| kh kz

Limit: No Stratification (g!0) 4 - [ac2 + a2 |k|2] 2 + N2 a2 kh2 = 0  = a |k| Acoustic waves

Limit: Vertical Propagation (kh!0) 4 - [ac2 + a2 |k|2] 2 + N2 a2 kh2 = 0  = (a2 |k|2 + ac2)1/2 > ac Modified acoustic waves

Limit: Incompressible (a!1) 4 - [ac2 + a2 |k|2] 2 + N2 a2 kh2 = 0  = N kh/|k| = N sin  < N |k| kh kz  Gravity waves

Gravity Waves in a Liquid

kz2 = (2 - ac2)/a2 + (N2 - 2) kh2/2 Vertical Wavenumber 4 - [ac2 + a2 |k|2] 2 + N2 a2 kh2 = 0 kz2 = (2 - ac2)/a2 + (N2 - 2) kh2/2 |k| kh kz kz2 > 0 ! Propagating (wave) kz2 < 0 ! Evanescent (exponential)

Isothermal Diagnostic Diagram Acoustic waves Gravity waves

WKBJ Diagnostic Diagram Acoustic waves Gravity waves

Spherical Harmonics Sectoral Radial Tesseral Zonal kh2 = ℓ(ℓ+1)/r2

Propagation Diagram ̶ Polytrope ℓ=2 modes

Wave Trapping ̶ Modes p modes f mode g modes ℓ=2 modes

Propagation Diagram ̶ 5 M¯ p modes f mode g modes

Mode Frequencies rb - ra = n /2 = n / kr Limit of large n : kr ¼ |k| ra - rb ¼ R ! R ¼ n / |k|

p-mode Frequencies Trapping : R ¼ n / |k| Dispersion :  ¼ a |k|  ¼ n a/R  = n [s a-1 dr]-1

Dispersion :  ¼ N kh / |k| = [ℓ(ℓ+1)]1/2 / |k|R g-mode Frequencies Trapping : R ¼ n / |k| Dispersion :  ¼ N kh / |k| = [ℓ(ℓ+1)]1/2 / |k|R  ¼ [ℓ(ℓ+1)]1/2/n N  = [ℓ(ℓ+1)]1/2/n [s N/r dr]

Frequency Spectra Polytrope 5 M¯

p-mode Surface Variations

g-mode Surface Variations

p modes vs. g modes