A Practical Introduction to Stellar Nonradial Oscillations Rich Townsend University of Delaware ESO Chile ̶ November 2006 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAA
Objectives What? Where? Why? How?
Overview Historical Perspective Waves in stars Global oscillations Radial pulsators Nonradial pulsators Waves in stars Global oscillations Surface variations Rotation effects Driving mechanisms
Cephei John Goodricke (1784)
Cepheids in the HR Diagram
Henrietta Leavitt (1868-1921) SMC Stars: Mv = -2.76 log(P) - 1.4
Period-Luminosity Relation
Origin of the P-L Relation Constant L evolution L / M3 Constant T instability L / R2 Dynamical timescale / R3/2 M-1/2 Combine: / L0.6 Compare: / L0.9
Extragalactic Distance Scale
Paul Ledoux (1914-1988) mechanism Secular instability Semiconvection Nonradial pulsation
Canis Majoris Struve (1950): P1 = 0.25002 d P2 = 0.25130 d
Analogy: Hydrogen Spectrum
Nonradial Oscillations
Global Standing Waves Angular Radial
NRO’s in the HR Diagram
Types of Wave Acoustic (pressure) Gravity (buoyancy)
Linearized Hydrodynamics ’/t + r¢(v’) = 0 v’/t = -rp’ - g’ p’/ t + v’¢rp = a2(’/ t + v’¢r)
Wave Equation Eliminate ’ and p’: 2v’/t2 = a2r(r¢v’) + (a2r¢v’)rln 1 + (1 - 1)(r¢v’)g + r(g¢v’) 1 = (ln p/ln )s = a2/p
Waves in Isothermal Atmosphere 2v’/t2 = a2r(r¢v’) + ( - 1)(r¢v’)g + r(g¢v’) Trial solutions: v’ / exp[i(k¢r - t) + z/2H] E = ½ |v’|2 = ½ 0 exp[-z/H] v0’2 exp[z/H] = ½ 0 v0’2
Dispersion Relation 4 - [ac2 + a2 |k|2] 2 + N2 a2 kh2 = 0 Acoustic cutoff frequency : ac = /2 g/a Buoyancy frequency : N = (-1)1/2 g/a |k| kh kz
Limit: No Stratification (g!0) 4 - [ac2 + a2 |k|2] 2 + N2 a2 kh2 = 0 = a |k| Acoustic waves
Limit: Vertical Propagation (kh!0) 4 - [ac2 + a2 |k|2] 2 + N2 a2 kh2 = 0 = (a2 |k|2 + ac2)1/2 > ac Modified acoustic waves
Limit: Incompressible (a!1) 4 - [ac2 + a2 |k|2] 2 + N2 a2 kh2 = 0 = N kh/|k| = N sin < N |k| kh kz Gravity waves
Gravity Waves in a Liquid
kz2 = (2 - ac2)/a2 + (N2 - 2) kh2/2 Vertical Wavenumber 4 - [ac2 + a2 |k|2] 2 + N2 a2 kh2 = 0 kz2 = (2 - ac2)/a2 + (N2 - 2) kh2/2 |k| kh kz kz2 > 0 ! Propagating (wave) kz2 < 0 ! Evanescent (exponential)
Isothermal Diagnostic Diagram Acoustic waves Gravity waves
WKBJ Diagnostic Diagram Acoustic waves Gravity waves
Spherical Harmonics Sectoral Radial Tesseral Zonal kh2 = ℓ(ℓ+1)/r2
Propagation Diagram ̶ Polytrope ℓ=2 modes
Wave Trapping ̶ Modes p modes f mode g modes ℓ=2 modes
Propagation Diagram ̶ 5 M¯ p modes f mode g modes
Mode Frequencies rb - ra = n /2 = n / kr Limit of large n : kr ¼ |k| ra - rb ¼ R ! R ¼ n / |k|
p-mode Frequencies Trapping : R ¼ n / |k| Dispersion : ¼ a |k| ¼ n a/R = n [s a-1 dr]-1
Dispersion : ¼ N kh / |k| = [ℓ(ℓ+1)]1/2 / |k|R g-mode Frequencies Trapping : R ¼ n / |k| Dispersion : ¼ N kh / |k| = [ℓ(ℓ+1)]1/2 / |k|R ¼ [ℓ(ℓ+1)]1/2/n N = [ℓ(ℓ+1)]1/2/n [s N/r dr]
Frequency Spectra Polytrope 5 M¯
p-mode Surface Variations
g-mode Surface Variations
p modes vs. g modes