Fixed mirror Movable mirror F M time t mirror position
FFT x n : optical path t m : time evolution of the process I : intensity of the interferogram x n : optical path t m : time evolution of the process I : intensity of the interferogram mirror position time t
10 ns / 0.07 cm 1 1 s / 0.3 cm 1 10 ns / 0.07 cm 1 1 s / 0.3 cm 1
Uhmann et al. Appl. Spectrosc. 45, 390 (1991)
cis trans J. Chem. Phys. 132, (2010).
Barone/Turnipseed/Ravishankara Faraday Discuss. 100, 39 (1995) Barone/Turnipseed/Ravishankara Faraday Discuss. 100, 39 (1995)
A1 SO 2 antisymmetric stretch obs. : 1280 cal. : 1262 A2 SO 2 symmetric stretch obs. : 1076 cal. : 1074 J. Chem. Phys. 124, (2006)
Photolysis at 248 nm of CH 3 SSCH 3 /O 2 ( 1/700, total 220 Torr ) at 260 K J. Chem. Phys. 133, (2010). CH 3 SO
A ( 1110 cm 1 ), B( 1397 cm 1 ) : syn-CH 3 SOO C ( 1071 cm 1 ): CH 3 SO E ( 1170 cm 1 ): CH 3 S(O)OSCH 3 F ( 1120 cm 1 ): CH 3 S(O)S(O)CH 3 CH 3 SOO + CH 3 SOO 2 CH 3 SO + O 2 H = 286 kJ mol 1 CH 3 SO + CH 3 SO CH 3 S(O)OSCH 3 H = 68 kJ mol 1 CH 3 SO + CH 3 SO CH 3 S(O)S(O)CH 3 H = 61 kJ mol 1 C: CH 3 SO A: CH 3 SOO CH 3 SOO + CH 3 S 2 CH 3 SO H = 334 kJ mol 1
J. Chem. Phys. 134, (2011)
CH 3 SO 2 CH 3 OSOCH 3 SOOCH 3 SO B3P86Expt.B3P86Expt.B3P86Expt.B3P86Expt JCP, 124, (2006) JCP, 133, (2010) S=O stretch; O-O stretch; C-O stretch JCP 134, (2011)
Barone/Turnipseed/Ravishankara Faraday Discuss. 100, 39 (1995) Barone/Turnipseed/Ravishankara Faraday Discuss. 100, 39 (1995)
CH 3 S + NO 2 → CH 3 SO + NO (1) CH 3 S + NO 2 + M → CH 3 SNO 2 +M (2) CH 3 S + NO 2 → H 2 CS + HONO (3) CH 3 S + NO 2 + M → CH 3 SONO + M (4) ? (CH 3 SO) = 1.07 0.15 (PIMS, P T = 1 Torr) (NO) = 0.8 0.2 (LIF, P T = 300 Torr) Domine, Murrells, Howard, J. Phys. Chem. 94, 5839 (1990). Tyndall, Ravishankara, J. Phys. Chem. 93, 2426 (1989).
cis-CH 3 SONO (-132.9)(-122.5)(-154.2) (-108.7) (-93.6) Wang et al., Chinese Chem. Lett. 13, 805 (2002). QCISD(T) / G(d,p) Wang et al., Chinese Chem. Lett. 13, 805 (2002). QCISD(T) / G(d,p) S. K. Tang et al., Int. J. Quantum Chem. 107, 1495 (2007). G3(MP2) 17
P T = 16 to 141 Torr (N 2 /DMDS/NO 2 = 140/0.9/0.06) R = 4 cm -1 Laser trigger = 4 Hz, 10 shots average on each step CH 3 SSCH nm → 2 CH 3 S DMDS) = 1.24 cm 2 molecule -1 F (CH 3 S) = 1.65 0.38 NO 2 ) = 2.75 cm 2 molecule -1 [NO 2 ]/[CH 3 S] = 1.9 /3.1 molecule cm -3 P(N 2 O 4 ) < 0.1 mTorr 18
A1A1 B A2A2 C SO 2 19 NO 2 DMDS P T = 16.2 Torr
P T = Torr A1A1 B NO 2 DMDS 20
(a) 141 Torr (31-60 s) (b) 16.1 Torr (6-10 s) CH 3 SNO 2 cis-CH 3 SONO CH 3 SO CH 3 SNO (g) solid: calculation dash: experiment solid: calculation dash: experiment A1A1 B C A2A2 trans-HONO O H = 3591 cm -1 N=O = 1700 cm -1 NOH = 1263 cm -1 cis-HONO E = 1.7 kJ mole -1 O H = 3426 cm -1 N=O = 1641 cm -1 21
(a) CH 3 SNO 2 (b) cis-CH 3 SONO (c) Expt. vs. simulation A1A1 A2A2 4 = 1562 cm -1 8 = 1260 cm -1 4 = 1562 cm -1 P T = 16.2 Torr, s 22
(a) Experiments s s subtraction (b) cis-CH 3 SONO (c) Expt. vs. cis-CH 3 SONO 4 = 1562 cm -1 P T = Torr A1A1 23
Predicted IR intensity: CH 3 SO/CH 3 SONO/CH 3 SNO 2 =42/294/331 Integrated intensity: CH 3 SO/CH 3 SONO/CH 3 SNO 2 =0.52/0.50/0.33 Relative branching ratio: CH 3 SO/CH 3 SONO/CH 3 SNO 2 =1.00/0.14/0.08 P t (Torr)CH 3 SO + NOCH 3 SONOCH 3 SNO 2 Reference J. Phys. Chem. 93, 2426 (1989) 1 1 -This work This work This work J. Phys. Chem. 94, 5839 (1990)
25 k / cm 3 molecule -1 s -1 Temp. /K Reference 10.1 ± a 6.28 ± b 10.8 ± c 5.1 ± d 6.10 ± e 5.3 ± This work a Chang, Wang, Wang, Hwang, Lee, J. Phys. Chem. A 104, 5525 (2000). b A. A. Turnipseed, S. B. Barone, A. R. Ravishankara, J. Phys. Chem. 97, 5926 (1993). c R. J. Balla, H. H. Nelson, J. R. McDonald, Chem. Phys. 109, 101 (1986). d F. Domine, T. P. Murrells, C. J. Howard, J. Phys. Chem. 94, 5839 (1990). e G. S. Tyndall, A. R. Ravishankara, J. Phys. Chem. 93, 2426 (1989) cm -1 (A 1 )
New products CH 3 SO, cis-CH 3 SONO and CH 3 SNO 2 are identified in the reaction of CH 3 S + NO 2. – CH 3 SO:1071 cm -1 – cis-CH 3 SONO: 1562 cm -1 – CH 3 SNO 2 : 1560, 1260 cm -1 The major products at high pressure (140.8 Torr) is cis- CH 3 SONO, whereas those at low pressure (4-16 Torr) is CH 3 SO; CH 3 SNO 2 is the minor product. A simple kinetics model was employed to yield a second-order rate coefficient for reaction CH 3 S + NO 2 as k = (5.3 1.6) cm 3 molecule -1 s -1, consistent with previous results. 26
Li-Kang Chu Jin-Dah Chen
Vibrational wavenumbers CH 3 SNO 2 a- =1562 cm -1 s- =1257 cm -1 gas phase CH 3 SO S O =1071 cm -1 L.-K. Chu and Y.-P. Lee, J. Chem. Phys. 133, 1 (2010). H. Niki, P. D. Maker, C. M. Savage, and L. P. Breltenbach, J. Phys. Chem. 87, 7 (1983). trans-HONO O H =3591 cm -1 N=O =1700 cm -1 NOH =1263 cm -1 cis-HONO E=1.7 kJ mole -1 O H =3426 cm -1 N=O =1641 cm -1 J. -M. Guilmot, M. Godefroid, and M. Herman, J. Mol. Sprctro. 160, 387 (1993). J. -M. Guilmot, F. M é len, and M. Herman, J. Mol. Sprctro. 160, 401 (1993). 28
Vibrational wavenumbers cis-CH 3 SONO N=O =1633 cm -1 (294) B3LYP/aug-cc-pVTZ perp,trans-CH 3 SONO perp,cis-CH 3 SONO N=O =1819 cm -1 (417) N=O =1815 cm -1 (305) E=0 E=1.8 kJ mol -1 E=5.7 kJ mol -1 29
cis-CH 3 SONO CH 3 SO A’/A”= B’/B”= C’/C”= A’/A”= B’/B”= C’/C”=
CH 3 SNO A’/A”= B’/B”= C’/C”= A’/A”= B’/B”= C’/C”=