Fixed mirror Movable mirror F M time t mirror position.

Slides:



Advertisements
Similar presentations
David H. Parker Radboud University Nijmegen 3–5 February, 2015 Leiden 1.
Advertisements

Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,
Spring Semester Final Exam Review
Conical Intersections between Vibrationally Adiabatic Surfaces in Methanol Mahesh B. Dawadi and David S. Perry Department of Chemistry, The University.
Stoichiometry: Calculations with Chemical Equations.
Chemistry 101 Chapter 9 Chemical Quantities.
Visible and IR Absorption Spectroscopy Andrew Rouff and Kyle Chau.
Chapter 9 Chemical Quantities Chemistry B2A Formula and Molecule Ionic & covalent compounds  Formulaformula of NaCl Covalent compounds  Molecule molecule.
Helium Nanodroplet Isolation Spectroscopy of NO 2 and van der Waals Complexes Robert Fehnel Kevin Lehmann Department of Chemistry University of Virginia.
TORSIONAL EXCITATION IN O-H STRETCH OVERTONE SPECTRA OF ETHYL HYDROPEROXIDE CONFORMERS Shizuka Hsieh, Ma Thida, Margaret Nyamumbo, Hannah Hitchner, Noah.
H-atom Reaction Kinetics in Solid Parahydrogen Followed by Rapid Scan FTIR David T. Anderson Department of Chemistry, University of Wyoming Laramie, WY.
Electronic transitions of ScP N. Wang, Y. W. Ng, K. F. Ng, and A. S.-C. Cheung Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong.
Kuo-Hsiang Hsu and Yuan-Pern Lee Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Taiwan Meng Huang.
 The limited Reagent is the reactant in a chemical reaction that limits the amount of product that can be formed.  The molecule that produces the least.
DENNIS J. CLOUTHIER, ROBERT GRIMMINGER, and BING JIN, Department of Chemistry, University.
Tapas Chakraborty Indian Association for the Cultivation of Science Calcutta, India MJ16, OSU ISMS 2013 Photochemistry of acetone in simulated atmosphere.
SCH3U 5.2 Introduction to Stoichiometry. What is Stoichiometry? Stoichiometry is the study of the quantities involved in chemical reactions. The word.
FTIR Spectroscopy of the n4 bands of 14NO3 and 15NO3
Studying Ozonolysis Reactions of 2-Butenes Using Cavity Ring-down Spectroscopy Liming Wang, Yingdi Liu, Mixtli Campos-Pineda, Chad Priest and Jingsong.
INFRARED SPECTRUM OF MATRIX-ISOLATED METHYLHYDROXYCARBENE INFRARED SPECTRUM OF MATRIX-ISOLATED METHYLHYDROXYCARBENE C. A. BAUMANN Department of Chemistry.
The Butler Group Benj FitzPatrick Britni Ratliff Bridget Alligood Doran Bennett Justine Bell Arjun Raman Emily Glassman Dr. Xiaonan Tang Molecular Beam.
Oxygen Atom Recombination in the Presence of Singlet Molecular Oxygen Michael Heaven Department of Chemistry Emory University, USA Valeriy Azyazov P.N.
In-situ Photolysis of Methyl Iodide in Solid Para-hydrogen and Solid Ortho-deuterium Yuki Miyamoto 1, Mizuho Fushitani 2, Hiromichi Hoshina 3, and Takamasa.
RECENT STUDIES OF OXYGEN- IODINE LASER KINETICS Azyazov V.N. and Pichugin S.Yu. P.N. Lebedev Physical Institute,Samara Branch, Russia Heaven M.C. Emory.
Infrared spectra of complexes containing acetylene-d2 Clément Lauzin, J. Norooz Oliaee, N. Moazzen-Ahmadi Department of Physics and Astronomy University.
Application of Time-Resolved Fourier-Transform Infrared Spectroscopy to Photodissociation Dynamics Application of Time-Resolved Fourier-Transform Infrared.
Methyl Bromide : Spectroscopic line parameters in the 7- and 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire.
Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8233, MONARIS, F-75005, Paris, France FORMATION OF HYDROXYLAMINE FROM AMMONIA AND HYDROXYL RADICALS.
Electronic Spectroscopy of Palladium Dimer (Pd 2 ) 68th OSU International Symposium on Molecular Spectroscopy Yue Qian, Y. W. Ng and A. S-C. Cheung Department.
1 Infrared Spectroscopy of Ammonium Ion MG03: Sub-Doppler Spectroscopy of ND 3 H + Ions in the NH Stretch Mode MG04: Infrared Spectroscopy of Jet-cooled.
Time-Resolved FTIR Emission Spectroscopy of the (v 1 )-CH Stretch of the Ketenyl (HCCO) Radical Michael J. Wilhelm, William McNavage, and Raymond Groller.
Chapter 14 – Chemical Kinetics The rate of a chemical reaction is the speed at which products or formed and reactants broken down. There factors that affect.
SPECTROSCOPY AND ANALYTICAL CHEMISTRY  A variety of spectroscopic techniques can be used to study/elucidate ground and excited state atomic and molecular.
 What is the formula for Gibbs Free energy?  What does each variable represent?  How can you tell if a reaction will be spontaneous?  How can you tell.
Atmospheric Chemical Kinetics of Reactions of 2-butoxy and 3-pentoxy Radicals with NO and O 2 Wei Deng, Andrew J. Davis, Lei Zhang and Dr. Theodore S.
Chapter 19: Thermodynamics and Equilibrium Chemistry 1062: Principles of Chemistry II Andy Aspaas, Instructor.
Gas Stoichiometry LAST PHASE OF STOICHIOMETRY, WOOHOO!!!!!
Proton Sponges: A Simple Organic Motif for Revealing the Quantum Structure of the Intramolecular Proton Bond H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+
DMITRY G. MELNIK AND TERRY A. MILLER The Ohio State University, Dept. of Chemistry, Laser Spectroscopy Facility, 120 W. 18th Avenue, Columbus, Ohio
RF16: Photogeneration of, and Efficient Collisional Energy Transfer from, Vibrationally Excited Hydrogen Isocyanide (HNC) Michael J. Wilhelm 1,#, Jonathan.
Kinetics and Spectroscopy of the Gas Phase (CH 3 ) 2 S–Br Adduct V. Dookwah-Roberts 1, R.J.H. Lee 2, J.M. Nicovich 2, and P.H. Wine 1,2 1 School of Earth.
The A ← X ABSORPTION SPECTRUM OF 2-NITROOXYBUTYL PEROXY RADICAL
Study of the CH 2 I + O 2 Reaction with a Step-scan Fourier-transform Infrared Absorption Spectrometer: Spectra of the Criegee Intermediate CH 2 OO and.
IR Spectroscopy Wave length ~ 100 mm to 1 mm
Rotational and Vibrational Energy Transfer from the First Overtone Stretch of Acetylene Keith Freel Jiande Han Michael C. Heaven.
Infrared Observation of the ν 1 (  ) and ν 2 (  ) Stretching Modes of Linear GeC 3 E. Gonzalez, C.M.L. Rittby, and W.R.M. Graham Department of Physics.
CH 3 D Near Infrared Cavity Ring-down Spectrum Reanalysis and IR-IR Double Resonance S. Luna Yang George Y. Schwartz Kevin K. Lehmann University of Virginia.
Neal Kline, Meng Huang, and Terry A. Miller Department of Chemistry and Biochemistry The Ohio State University.
Expanded Choices for Vibration-Rotation Spectroscopy in the Physical Chemistry Teaching Laboratory Joel R. Schmitz and David A. Dolson Department of Chemistry.
Structure in the Visible Absorption Bands of Jet-Cooled Phenyl Peroxy Radicals Michael N. Sullivan *, Keith Freel, J. Park, M.C. Lin, and Michael C. Heaven.
Anomalous CH Stretch Intensity Effects in Halomethyl Radicals: “Charge-Sloshing” vs. Bond- Dipole Contributions to IR Transition Moments E.S. Whitney,
Near-Infrared Photochemistry of Atmospheric Nitrites Paul Wennberg, Coleen Roehl, Geoff Blake, and Sergey Nizkorodov California Institute of Technology.
Photoelectron spectroscopy of the cyclopentadienide anion: Analysis of the Jahn- Teller effects in the cyclopentadienyl radical Takatoshi Ichino, Adam.
1. 2 Natural Anthropogenic 3  Production of OH radical  An important source of HOx  The observed yields: 10% - 100%.  Generate Criegee intermediate.
Laser Spectroscopy of the C 1 Σ + – X 1 Σ + Transition of ScI ZHENWU LIAO, MEI YANG, MAN-CHOR CHAN Department of Chemistry, The Chinese University of Hong.
Ch. 12 Stoichiometry 12.1 The Arithmetic of Equations.
5.4 Bond enthalpies Define the term average bond enthalpy Explain, in terms of average and enthalpies, why some reactions are exothermic and.
JET-COOLED LASER-INDUCED FLUORESCENCE SPECTROSCOPY OF LARGE SECONDARY ALKOXY RADICALS 06/21/10 JINJUN LIU, MING-WEI CHEN, AND TERRY A. MILLER Laser Spectroscopy.
Laser spectroscopic study of CaH in the B 2 Σ + and D 2 Σ + state Kyohei Watanabe, Kanako Uchida, Kaori Kobayashi, Fusakazu Matsushima, Yoshiki Moriwaki.
The Overtone Spectrum of HOONO: A Twisted Tale Juliane L. Fry, Andrew Mollner, Paul Wennberg, Mitchio Okumura California Institute of Technology Anne B.
High Precision Spectroscopy of CH 5 + with NICE-OHVMS James N. Hodges, Adam J. Perry and Benjamin J. McCall.
CO2 dimer: Five intermolecular vibrations observed via infrared combination bands Jalal Norooz Oliaee, Mehdi Dehghany, Mojtaba Rezaei, Nasser Moazzen-Ahmadi.
International Symposium on Molecular Spectroscopy, 2017
60th International Symposium on Molecular Spectroscopy
Detection of IO in the MBL using an open-path CRDS
Characterization of CHBrCl2 photolysis by velocity map imaging
Single Vibronic Level (SVL) emission spectroscopy of CHBr: Vibrational structure of the X1A and a3A  states.
IR Spectra of CH2OO at resolution 0
Stability of the HOOO Radical via Infrared Action Spectroscopy
How many moles of water are made by
Presentation transcript:

Fixed mirror Movable mirror F M time t mirror position

FFT x n : optical path t m : time evolution of the process I : intensity of the interferogram x n : optical path t m : time evolution of the process I : intensity of the interferogram mirror position time t

10 ns / 0.07 cm ­1 1  s / 0.3 cm ­1 10 ns / 0.07 cm ­1 1  s / 0.3 cm ­1

Uhmann et al. Appl. Spectrosc. 45, 390 (1991)

cis trans J. Chem. Phys. 132, (2010).

Barone/Turnipseed/Ravishankara Faraday Discuss. 100, 39 (1995) Barone/Turnipseed/Ravishankara Faraday Discuss. 100, 39 (1995)

A1 SO 2 antisymmetric stretch obs. : 1280 cal. : 1262 A2 SO 2 symmetric stretch obs. : 1076 cal. : 1074 J. Chem. Phys. 124, (2006)

Photolysis at 248 nm of CH 3 SSCH 3 /O 2 ( 1/700, total 220 Torr ) at 260 K J. Chem. Phys. 133, (2010). CH 3 SO

A ( 1110 cm  1 ), B( 1397 cm  1 ) : syn-CH 3 SOO C ( 1071 cm  1 ): CH 3 SO E ( 1170 cm  1 ): CH 3 S(O)OSCH 3 F ( 1120 cm  1 ): CH 3 S(O)S(O)CH 3 CH 3 SOO + CH 3 SOO  2 CH 3 SO + O 2  H =  286 kJ mol  1 CH 3 SO + CH 3 SO  CH 3 S(O)OSCH 3  H =  68 kJ mol  1 CH 3 SO + CH 3 SO  CH 3 S(O)S(O)CH 3  H =  61 kJ mol  1 C: CH 3 SO A: CH 3 SOO CH 3 SOO + CH 3 S  2 CH 3 SO  H =  334 kJ mol  1

J. Chem. Phys. 134, (2011)

CH 3 SO 2 CH 3 OSOCH 3 SOOCH 3 SO B3P86Expt.B3P86Expt.B3P86Expt.B3P86Expt JCP, 124, (2006) JCP, 133, (2010) S=O stretch; O-O stretch; C-O stretch JCP 134, (2011)

Barone/Turnipseed/Ravishankara Faraday Discuss. 100, 39 (1995) Barone/Turnipseed/Ravishankara Faraday Discuss. 100, 39 (1995)

CH 3 S + NO 2 → CH 3 SO + NO (1) CH 3 S + NO 2 + M → CH 3 SNO 2 +M (2) CH 3 S + NO 2 → H 2 CS + HONO (3) CH 3 S + NO 2 + M → CH 3 SONO + M (4) ?  (CH 3 SO) = 1.07  0.15 (PIMS, P T = 1 Torr)  (NO) = 0.8  0.2 (LIF, P T = 300 Torr) Domine, Murrells, Howard, J. Phys. Chem. 94, 5839 (1990). Tyndall, Ravishankara, J. Phys. Chem. 93, 2426 (1989).

cis-CH 3 SONO (-132.9)(-122.5)(-154.2) (-108.7) (-93.6) Wang et al., Chinese Chem. Lett. 13, 805 (2002). QCISD(T) / G(d,p) Wang et al., Chinese Chem. Lett. 13, 805 (2002). QCISD(T) / G(d,p) S. K. Tang et al., Int. J. Quantum Chem. 107, 1495 (2007). G3(MP2) 17

P T = 16 to 141 Torr (N 2 /DMDS/NO 2 = 140/0.9/0.06) R = 4 cm -1 Laser trigger = 4 Hz, 10 shots average on each step CH 3 SSCH nm → 2 CH 3 S  DMDS) = 1.24  cm 2 molecule -1 F (CH 3 S) = 1.65  0.38  NO 2 ) = 2.75  cm 2 molecule -1 [NO 2 ]/[CH 3 S] = 1.9  /3.1  molecule cm -3 P(N 2 O 4 ) < 0.1 mTorr 18

A1A1 B A2A2 C SO 2 19 NO 2 DMDS P T = 16.2 Torr

P T = Torr A1A1 B NO 2 DMDS 20

(a) 141 Torr (31-60  s) (b) 16.1 Torr (6-10  s) CH 3 SNO 2 cis-CH 3 SONO CH 3 SO CH 3 SNO (g) solid: calculation dash: experiment solid: calculation dash: experiment A1A1 B C A2A2 trans-HONO O  H = 3591 cm -1 N=O = 1700 cm -1  NOH = 1263 cm -1 cis-HONO  E = 1.7 kJ mole -1 O  H = 3426 cm -1 N=O = 1641 cm -1 21

(a) CH 3 SNO 2 (b) cis-CH 3 SONO (c) Expt. vs. simulation A1A1 A2A2 4 = 1562 cm -1 8 = 1260 cm -1 4 = 1562 cm -1 P T = 16.2 Torr,  s 22

(a) Experiments  s  s subtraction (b) cis-CH 3 SONO (c) Expt. vs. cis-CH 3 SONO 4 = 1562 cm -1 P T = Torr A1A1 23

Predicted IR intensity: CH 3 SO/CH 3 SONO/CH 3 SNO 2 =42/294/331 Integrated intensity: CH 3 SO/CH 3 SONO/CH 3 SNO 2 =0.52/0.50/0.33 Relative branching ratio: CH 3 SO/CH 3 SONO/CH 3 SNO 2 =1.00/0.14/0.08 P t (Torr)CH 3 SO + NOCH 3 SONOCH 3 SNO 2 Reference  J. Phys. Chem. 93, 2426 (1989)  1 1 -This work This work This work  J. Phys. Chem. 94, 5839 (1990)

25 k / cm 3 molecule -1 s -1 Temp. /K Reference 10.1 ± a 6.28 ± b 10.8 ± c 5.1 ± d 6.10 ± e 5.3 ± This work a Chang, Wang, Wang, Hwang, Lee, J. Phys. Chem. A 104, 5525 (2000). b A. A. Turnipseed, S. B. Barone, A. R. Ravishankara, J. Phys. Chem. 97, 5926 (1993). c R. J. Balla, H. H. Nelson, J. R. McDonald, Chem. Phys. 109, 101 (1986). d F. Domine, T. P. Murrells, C. J. Howard, J. Phys. Chem. 94, 5839 (1990). e G. S. Tyndall, A. R. Ravishankara, J. Phys. Chem. 93, 2426 (1989) cm -1 (A 1 )

New products CH 3 SO, cis-CH 3 SONO and CH 3 SNO 2 are identified in the reaction of CH 3 S + NO 2. – CH 3 SO:1071 cm -1 – cis-CH 3 SONO: 1562 cm -1 – CH 3 SNO 2 : 1560, 1260 cm -1 The major products at high pressure (140.8 Torr) is cis- CH 3 SONO, whereas those at low pressure (4-16 Torr) is CH 3 SO; CH 3 SNO 2 is the minor product. A simple kinetics model was employed to yield a second-order rate coefficient for reaction CH 3 S + NO 2 as k = (5.3  1.6)  cm 3 molecule -1 s -1, consistent with previous results. 26

Li-Kang Chu Jin-Dah Chen

Vibrational wavenumbers CH 3 SNO 2 a-  =1562 cm -1 s-  =1257 cm -1 gas phase CH 3 SO S  O =1071 cm -1 L.-K. Chu and Y.-P. Lee, J. Chem. Phys. 133, 1 (2010). H. Niki, P. D. Maker, C. M. Savage, and L. P. Breltenbach, J. Phys. Chem. 87, 7 (1983). trans-HONO O  H =3591 cm -1 N=O =1700 cm -1  NOH =1263 cm -1 cis-HONO  E=1.7 kJ mole -1 O  H =3426 cm -1 N=O =1641 cm -1 J. -M. Guilmot, M. Godefroid, and M. Herman, J. Mol. Sprctro. 160, 387 (1993). J. -M. Guilmot, F. M é len, and M. Herman, J. Mol. Sprctro. 160, 401 (1993). 28

Vibrational wavenumbers cis-CH 3 SONO N=O =1633 cm -1 (294) B3LYP/aug-cc-pVTZ perp,trans-CH 3 SONO perp,cis-CH 3 SONO N=O =1819 cm -1 (417) N=O =1815 cm -1 (305) E=0 E=1.8 kJ mol -1 E=5.7 kJ mol -1 29

cis-CH 3 SONO CH 3 SO A’/A”= B’/B”= C’/C”= A’/A”= B’/B”= C’/C”=

CH 3 SNO A’/A”= B’/B”= C’/C”= A’/A”= B’/B”= C’/C”=