Warm up 1. Write the expression in expanded form, then find the sum. 2. Express the series using sigma notation.

Slides:



Advertisements
Similar presentations
Digital Lesson The Binomial Theorem.
Advertisements

Binomial Theorem 11.7.
6.8 – Pascal’s Triangle and the Binomial Theorem.
The binomial theorem 1 Objectives: Pascal’s triangle Coefficient of (x + y) n when n is large Notation: ncrncr.
Warm Up Multiply. 1. x(x3) x4 2. 3x2(x5) 3x7 3. 2(5x3) 10x3 4. x(6x2)
Ms. Nong Digital Lesson (Play the presentation and turn on your volume)
SFM Productions Presents: Another adventure in your Pre-Calculus experience! 9.5The Binomial Theorem.
Monday: Announcements Progress Reports this Thursday 3 rd period Tuesday/Wednesday STARR Testing, so NO Tutorials (30 minute classes) Tuesday Periods 1,3,5,7.
Chapter 8 Sec 5 The Binomial Theorem. 2 of 15 Pre Calculus Ch 8.5 Essential Question How do you find the expansion of the binomial (x + y) n ? Key Vocabulary:
The Binomial Theorem.
Notes 9.2 – The Binomial Theorem. I. Alternate Notation A.) Permutations – None B.) Combinations -
What does Factorial mean? For example, what is 5 factorial (5!)?
2.4 Use the Binomial Theorem Test: Friday.
BINOMIAL EXPANSION. Binomial Expansions Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 The binomial theorem provides a useful method.
The Binomial Theorem 9-5. Combinations How many combinations can be created choosing r items from n choices. 4! = (4)(3)(2)(1) = 24 0! = 1 Copyright ©
Copyright © 2007 Pearson Education, Inc. Slide 8-1.
11.1 – Pascal’s Triangle and the Binomial Theorem
5-7: The Binomial Theorem
Lesson 6.8A: The Binomial Theorem OBJECTIVES:  To evaluate a binomial coefficient  To expand a binomial raised to a power.
Copyright © Cengage Learning. All rights reserved. 8.4 The Binomial Theorem.
9.5 The Binomial Theorem Let’s look at the expansion of (x + y)n
Copyright © Cengage Learning. All rights reserved. 8 Sequences, Series, and Probability.
Binomial Theorem & Binomial Expansion
The Binomial Theorem. (x + y) 0 Find the patterns: 1 (x + y) 1 x + y (x + y) 2 (x + y) 3 x 3 + 3x 2 y + 3xy 2 + y 3 (x + y) 4 (x + y) 0 (x + y) 1 (x +
2-6 Binomial Theorem Factorials
How many different landscapes could be created?
Pg. 601 Homework Pg. 606#1 – 6, 8, 11 – 16 # … + (2n) 2 # (3n + 1) #5 #7(3n 2 + 7n)/2 #84n – n 2 #21#23 #26 #29 #33The series.
Copyright © 2011 Pearson Education, Inc. Publishing as Prentice Hall.
8.5 The Binomial Theorem. Warm-up Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 (x + y) 3 = x 3 + 3x 2 y + 3xy 2 + y 3.
Algebra 2 CC 1.3 Apply the Binomial Expansion Theorem Recall: A binomial takes the form; (a+b) Complete the table by expanding each power of a binomial.
Combination
Section 8.5 The Binomial Theorem. In this section you will learn two techniques for expanding a binomial when raised to a power. The first method is called.
Section 8.5 The Binomial Theorem.
Binomial Theorem and Pascal’s Triangle.
Splash Screen.
Splash Screen.
The Binomial Theorem.
The binomial expansions
Pascal’s Triangle and the Binomial Theorem
Section 9-5 The Binomial Theorem.
Use the Binomial Theorem
The Binomial Theorem Ms.M.M.
The Binomial Expansion Chapter 7
Use the Binomial Theorem
Ch. 8 – Sequences, Series, and Probability
The Binomial Theorem Objectives: Evaluate a Binomial Coefficient
10.2b - Binomial Theorem.
Binomial Expansion.
Digital Lesson The Binomial Theorem.
6.8 – Pascal’s Triangle and the Binomial Theorem
8.4 – Pascal’s Triangle and the Binomial Theorem
Digital Lesson The Binomial Theorem.
Binomial Theorem Pascal’s Triangle
4-2 The Binomial Theorem Use Pascal’s Triangle to expand powers of binomials Use the Binomial Theorem to expand powers of binomials.
Essential Questions How do we use the Binomial Theorem to expand a binomial raised to a power? How do we find binomial probabilities and test hypotheses?
Use the Binomial Theorem
11.9 Pascal’s Triangle.
11.6 Binomial Theorem & Binomial Expansion
Digital Lesson The Binomial Theorem.
The Binomial Theorem OBJECTIVES: Evaluate a Binomial Coefficient
Digital Lesson The Binomial Theorem.
The binomial theorem. Pascal’s Triangle.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Digital Lesson The Binomial Theorem.
Digital Lesson The Binomial Theorem.
6.8 – Pascal’s Triangle and the Binomial Theorem
The Binomial Theorem.
10.4 – Pascal’s Triangle and the Binomial Theorem
Warm Up 1. 10C P4 12C P3 10C P3 8C P5.
Section 11.7 The Binomial Theorem
Presentation transcript:

Warm up 1. Write the expression in expanded form, then find the sum. 2. Express the series using sigma notation.

Lesson 12-6 The Binomial Theorem Objective: To use the Pascal’s Triangle to expand binomials

Introducing: Pascal’s Triangle What patterns do you see? Row 5 Row 6

counting numbers triangular numbers tetrahedra l numbers

The sum of each row is a power of 2.

rows are powers of eleven

Serpinski’s Triangle

The Binomial Theorem Strategy only: how do we expand these? 1.(x + 2) 2 2.(2x + 3) 2 3.(x – 3) 3 4.(a + b) 4

The Binomial Theorem Solutions 1.(x + 2) 2 = x 2 + 2(2)x = x 2 + 4x (2x + 3) 2 = (2x) 2 + 2(3)(2x) = 4x x (x – 3) 3 = (x – 3)(x – 3) 2 = (x – 3)(x 2 – 2(3)x ) = (x – 3)(x 2 – 6x + 9) = x(x 2 – 6x + 9) – 3(x 2 – 6x + 9) = x 3 – 6x 2 + 9x – 3x x – 27 = x 3 – 9x x – 27 4.(a + b) 4 = (a + b) 2 (a + b) 2 = (a 2 + 2ab + b 2 )(a 2 + 2ab + b 2 ) = a 2 (a 2 + 2ab + b 2 ) + 2ab(a 2 + 2ab + b 2 ) + b 2 (a 2 + 2ab + b 2 ) = a 4 + 2a 3 b + a 2 b 2 + 2a 3 b + 4a 2 b 2 + 2ab 3 + a 2 b 2 + 2ab 3 + b 4 = a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + b 4

THAT is a LOT of work! Isn’t there an easier way?

The Binomial Theorem

Use Pascal’s Triangle to expand (a + b) 5. The Binomial Theorem Use the row that has 5 as its second number. In its simplest form, the expansion is a 5 + 5a 4 b + 10a 3 b a 2 b 3 + 5ab 4 + b 5. The exponents for a begin with 5 and decrease. 1a 5 b 0 + 5a 4 b a 3 b a 2 b 3 + 5a 1 b 4 + 1a 0 b 5 The exponents for b begin with 0 and increase. Row 5

The Binomial Theorem The expansion of has n+1 terms The 1 st term is and the last term is The x exponent decreases by 1 each term and the y exponent increases by 1 each term The degree of each term is n The coefficients are symmetric.

Expand

Expanding with coefficients (2x – y) 4 =16x 4 + 4(8x 3 )(-y) + 6(4x 2 )(y 2 ) + 4(2x)(-y 3 ) + y 4 = 16x 4 – 32x 3 y + 24x 2 y 2 – 8xy 3 + y 4

Expand

Find the fourth term of (2x-3y) 6