1 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna,

Slides:



Advertisements
Similar presentations
NUCLEAR INP - NCSR D Nuclear Structure Staff: Dennis Bonatsos Students: P. Georgoudis S. Karabatsou Collaborations: N. Minkov, P.A. Terziev, INRNE.
Advertisements

Consistent analysis of nuclear level structures and nucleon interaction data of Sn isotopes J.Y. Lee 1*, E. Sh. Soukhovitskii 2, Y. D. Kim 1, R. Capote.
Combined evaluation of PFNS for 235 U(n th,f), 239 Pu(n th,f), 233 U(n th,f) and 252 Cf(sf) (in progress) V.G. Pronyaev Institute of Physics.
Electromagnetic Properties of
Evaluation of actinide nuclear data Osamu Iwamoto Japan Atomic Energy Agency 2010 Symposium on Nuclear Data.
Isomers and shape transitions in the n-rich A~190 region: Phil Walker University of Surrey prolate K isomers vs. oblate collective rotation the influence.
Structure of odd-odd nuclei in the interacting boson fermion-fermion model 3.
NPSC-2003Gabriela Popa Microscopic interpretation of the excited K  = 0 +, 2 + bands of deformed nuclei Gabriela Popa Rochester Institute of Technology.
Oscillations in mass asymmetry in second and third minima in actinides 1. Second & third minima in actinides 2. Barrier calculations: Micro-macro vs. selfconsistent.
The Theory of Partial Fusion A theory of partial fusion is used to calculate the competition between escape (breakup) and absorption (compound-nucleus.
Evaluation and Use of the Prompt Fission Neutron Spectrum and Spectra Covariance Matrices in Criticality and Shielding I. Kodeli1, A. Trkov1, R. Capote2,
1 CN formation cross section in nucleon induced reactions on 238 U Efrem Soukhovitski, JINER Frank Dietrich, LLNL Harm Wienke, Belgonucleaire Roberto Capote,
Coupled-Channel Computation of Direct Neutron Capture and (d,p) reactions on Non- Spherical Nuclei Goran Arbanas (ORNL) Ian J. Thompson (LLNL) with Filomena.
Heat Capacities of 56 Fe and 57 Fe Emel Algin Eskisehir Osmangazi University Workshop on Level Density and Gamma Strength in Continuum May 21-24, 2007.
International Atomic Energy Agency Reference Input Parameter Library (RIPL)-Levels Marco Verpelli and Roberto Capote Noy IAEA - Nuclear Data Section NSDD.
14th Internat. Conf. Nucl. Reaction Mechanisms, Varenna, 19th June PRE-EQUILIBRIUM (EXCITON) MODEL AND THE HEAVY-ION REACTIONS WITH CLUSTER EMISSION.
1 Roberto Capote, IAEA Nuclear Data Section Web: 14 th Int. Conference.
LLNL-PRES This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
The Status of Nuclear Data above 20 MeV Masayoshi SUGIMOTO, Tokio FUKAHORI Japan Atomic Energy Agency IAEA’s Technical Meeting on Nuclear Data Libraries.
1 Low Neutron Energy Cross Sections of the Hafnium Isotopes G. Noguère, A. Courcelle, J.M. Palau, O. Litaize CEA/DEN Cadarache, France P. Siegler JRC/IRMM.
1 New horizons for MCAS: heavier masses and α-particle scattering Juris P. Svenne, University of Manitoba, and collaborators CAP 15/6/2015.
Anti-neutrinos Spectra from Nuclear Reactors Alejandro Sonzogni National Nuclear Data Center.
V. Avrigeanu - Workshop on Activation Data (EAF-2005), Prague, June 7-9, Progress Report on Theoretical Tools and Calculations of Cross Sections.
原子核配对壳模型的相关研究 Yanan Luo( 罗延安 ), Lei Li( 李磊 ) School of Physics, Nankai University, Tianjin Yu Zhang( 张宇 ), Feng Pan( 潘峰 ) Department of Physics, Liaoning.
The Algebraic Approach 1.Introduction 2.The building blocks 3.Dynamical symmetries 4.Single nucleon description 5.Critical point symmetries 6.Symmetry.
Kazimierz 2011 T. Cap, M. Kowal, K. Siwek-Wilczyńska, A. Sobiczewski, J. Wilczyński Predictions of the FBD model for the synthesis cross sections of Z.
Extended optical model analyses of elastic scattering and fusion cross sections for 6, 7 Li Pb systems at near-Coulomb-barrier energies by using.
JENDL/HE-2007 & On going Activities for JENDL-4 Japan Atomic Energy Agency S. Kunieda IAEA 1-st RCM of CRP on FENDL-3.0, 2-5 Dec Y. Watanabe Kyushu.
IAEA Nuclear Data: the Reference Input Parameter Library (RIPL) for nuclear reaction calculations Roberto Capote, IAEA/NDS, Vienna, Austria.
Forschungszentrum Karlsruhe in der Helmholz-Gemeinschaft Karlsruhe Institute of Technology Nuclear Data Library for Advanced Systems – Fusion Devices (FENDL-3)
Dott. Antonio Botrugno Ph.D. course UNIVERSITY OF LECCE (ITALY) DEPARTMENT OF PHYSICS.
ESNT Saclay February 2, Structure properties of even-even actinides at normal- and super-deformed shapes J.P. Delaroche, M. Girod, H. Goutte, J.
April 17 DoE review 1 Reaction Theory in UNEDF Optical Potentials from DFT models Ian Thompson*, J. Escher (LLNL) T. Kawano, M. Dupuis (LANL) G. Arbanas.
IAEA International Atomic Energy Agency On the Compensating Effects in the Evaluated Cross Sections of 235 U A. Trkov, R. Capote International Atomic Energy.
FENDL-3 1st Research Co-ordination Meeting, 2-5 December 2008, IAEA, Vienna1 Marilena Avrigeanu Progress on Deuteron-Induced Activation Cross Section Evaluation.
10-1 Fission General Overview of Fission The Probability of Fission §The Liquid Drop Model §Shell Corrections §Spontaneous Fission §Spontaneously Fissioning.
NUCLEAR LEVEL DENSITIES NEAR Z=50 FROM NEUTRON EVAPORATION SPECTRA IN (p,n) REACTION B.V.Zhuravlev, A.A.Lychagin, N.N.Titarenko State Scientific Center.
Applied Nuclear Physics Group The final meeting of IAEA CRP – 6. 2 Calculation and Evaluation of (n,  ) Cross Sections for Producing 32 P,
Spin Polarization in d  → n p Chang Ho Hyun Daegu University Work with S. Ando (Daegu) Y.-H. Song (South Carolina) K. Kubodera (South Carolina) HNP2011,
Marilena Avrigeanu28th Int. Workshop. on Nuclear Theory Rila Mountains 2009 α - particle Optical Potential for astrophysical studies M. Avrigeanu and V.
Lawrence Livermore National Laboratory Effective interactions for reaction calculations Jutta Escher, F.S. Dietrich, D. Gogny, G.P.A. Nobre, I.J. Thompson.
P.G. Thirolf, D. Habs et al., LMU München
Petrică Buganu, and Radu Budaca IFIN-HH, Bucharest – Magurele, Romania International Workshop “Shapes and Dynamics of Atomic Nuclei: Contemporary Aspects”
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Shell model Notes: 1. The shell model is most useful when applied to closed-shell.
Nuclear and Radiation Physics, BAU, First Semester, (Saed Dababneh). 1 Extreme independent particle model!!! Does the core really remain inert?
Fission cross sections and the dynamics of the fission process F. -J
1 n_TOF data-analysis workshop CERN, Geneva, February 2015 Roberto Capote, IAEA Nuclear Data Section www-nds.iaea.org NUCLEAR.
TAGS data in ENDF/B-VII.1 and ENDF/B-VII.1.1 A.A. Sonzogni, T.D. Johnson, E.A. McCutchan, National Nuclear Data Center.
Some (more) High(ish)-Spin Nuclear Structure Paddy Regan Department of Physics Univesity of Surrey Guildford, UK Lecture 2 Low-energy.
Shape evolution of highly deformed 75 Kr and projected shell model description Yang Yingchun Shanghai Jiao Tong University Shanghai, August 24, 2009.
First Gogny conference, TGCC December 2015 DAM, DIF, S. Péru QRPA with the Gogny force applied to spherical and deformed nuclei M. Dupuis, S. Goriely,
Fusion of light halo nuclei
Reaction cross sections of carbon isotopes incident on proton and 12 C International Nuclear Physics Conference, Tokyo, Japan June 3-8, 2007 W. Horiuchi.
Faddeev Calculation for Neutron-Rich Nuclei Eizo Uzu (Tokyo Univ. of Science) Collaborators Masahiro Yamaguchi (RCNP) Hiroyuki Kamada (Kyusyu Inst. Tech.)
Data Needs in Nuclear Astrophysics, Basel, June 23-25, 2006 Nuclear Astrophysics Resources of the National Nuclear Data Center B. Pritychenko*, M.W. Herman,
Pavel Oblozinsky NSDD’07, St. Petersburg June 11-15, 2007 ENDF/B-VII.0 Library and Use of ENSDF Pavel Oblozinsky National Nuclear Data Center Brookhaven.
Time dependent GCM+GOA method applied to the fission process ESNT janvier / 316 H. Goutte, J.-F. Berger, D. Gogny CEA/DAM Ile de France.
Dynamical Model of Surrogate Reaction Y. Aritomo, S. Chiba, and K. Nishio Japan Atomic Energy Agency, Tokai, Japan 1. Introduction Surrogate reactions.
超重原子核的结构 孙 扬 上海交通大学 合作者:清华大学 龙桂鲁, F. Al-Khudair 中国原子能研究院 陈永寿,高早春 济南,山东大学, 2008 年 9 月 20 日.
5. Compound nucleus reactions Prof. Dr. A.J. (Arjan) Koning 1,2 1 International Atomic Energy Agency, Vienna 2 Division of Applied Nuclear Physics, Department.
Determining Reduced Transition Probabilities for 152 ≤ A ≤ 248 Nuclei using Interacting Boson Approximation (IBA-1) Model By Dr. Sardool Singh Ghumman.
V. Nuclear Reactions Topics to be covered include:
Shape parameterization
oblate prolate l=2 a20≠0, a2±1= a2±2= 0 Shape parameterization
20/30.
3. The optical model Prof. Dr. A.J. (Arjan) Koning1,2
Introduction Calculations for the N=7 isotones Summary
Nuclear Data for Reactor Fluxes
20/30.
Presentation transcript:

1 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015 Inelastic scattering on major actinides R. Capote (IAEA/NDS, Vienna), E. Soukhovitskii (JINER, Minsk), M. Sin (Univ. Bucharest), and A. Trkov (IAEA/NDS)

2 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015  Motivation, RPI benchmark  238 U DCCOMP + HF + HRTW +”EW” – u238-b44  235 U DCCOMP + HF + HRTW – u235-b2  New multi-band coupling DCCOMP OUTLOOK

3 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015 Motivation  High accuracy requirements were placed on inelastic cross- sections 238 U(n,inl) in the whole energy range up to 20 MeV (OECD/NEA WPEC Subgroup 26, NEA, 2008 ).  Changes in PFNS may lead to changes in evaluated inelastic cross sections which are discrepant (cf. INDC(NDS)-0597 (2012)) Physics Data  Better nuclear structure should be used in reaction calculations for heavy nuclei (beyond rigid-rotor and vibrational models)  Extended multi-band coupling needed with “consistent” coupling (i.e. able to reproduce OM observables for a given CC scheme)

4 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015 Danon et al, RPI quasi-integral benchmark U-238

5 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015 Graphite RPI benchmark (syst. uncert)

6 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015 RPI sensitivity to evaluated cross sections 238 U, 60 deg

7 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015 RPI sensitivity to evaluated cross sections 238 U, 153 deg

8 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June deg

9 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June deg

10 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015 Evaluated 238 U(n,f) vs. IAEA STD cross section

11 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015 Evaluated 238 U(n,f) vs. IAEA STD cross section raw EXFOR ratio data U8/U5, U5 std

12 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June recent relevant modelling advances  Dispersive Lane consistent coupled-channel OMPs * : neutron inelastic scattering to discrete levels;  CN-DIR interference effects (as predicted by Moldauer);  neutron inelastic scattering to the continuum;  improved fission formalism (descriptive capability) * J.M. Quesada et al., EPJ Web of Conferences (2013) J.M. Quesada et al., ND2013 conference Nuclear Data Sheets 108 (2007) 2655

13 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015 Evaluated 238 U(n,f) ib44 (IAEA)

14 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015 Impact of CN-DIR interference (EW transf.) Suggested Capote et al, ND2013 Confirmed Kawano et al, Varenna 2015

15 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015 Differences in the maximum: 238 U(n,inl)

16 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015 Differences: 235 U(n,inl) Impact on fast assemblies Impact on thermal assemblies 235 U ib2 – rr OMP

17 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015 Impact of 235 U DCC multi-band coupling

18 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015 NEW DCCOMP Multi-band coupling Odd and even-even targets

19 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015 Lane consistent nucleon dispersive OMP Coupled: levels of the ground state band/excited bands Coupling models: Rigid rotor, soft rotor, vibro-rotational model

20 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015 Expanded coupling scheme Soft (non-axial) rotor (even-even nuclides) Yu.V.Porodzinkij and E. Soukhovitskii, Phys. At. Nuclei 59 (1996) V.M. Maslov et al., J. Nucl. Sc.Tech. Supl.2 (2002) CHALLENGE: Derive a dispersive coupled channel potential (Lane consistent) with multiple-band coupling scheme valid for even-even and odd actinides D.W.Chan et al, PRC26 (1982) 841; PRC26 (1982) 861. E.Sheldon. L.E.Beghian, D.W.Chan et al, J.Phys.G:Nucl. Phys. 12, 443 (1986). T. Kawano, N. Fujikawa and Y. Kanda, INDC(JPN)-169 (1993) JENDL-3.2 Vibrational-rotational model (even-even nuclides)

21 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015 Nuclear shape parameterization A.Bohr, Mat. Fys. Medd. Dan. Vid. Selsk. 26, No. 14 (1952): Body-fixed frame aligned with principal axes:          P.O. Lipas and J.P. Davidson, Nucl. Phys. 26, (1961): Octupolar vibrations with even projection better describe low-lying negative parity states          =>  ±2 Rigid rotor + dynamical corrections Small param.

22 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015 Optical model potential

23 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015 Even-Even Nucleus Selection rules:  n   ±  : vibrational rule; next spin rules Intraband transitions: Quadrupolar-GS: Octupolar-GS:  

24 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015 Rigid rotor with soft-rotor (vibr.) corrections U-238 (similar for 232 Th) Yu.V.Porodzinkij and E. Soukhovitkii, Phys. At. Nuclei 59 (1996) (+8.4%) (+6.0%) ~J(J+1) rigid   non-axial octupole OMP with multiple band coupling gsb

25 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June U (CC)

26 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015 Nuclear shape parameterization-odd   Intraband transitions: Interband-transitions: Spin selection rules

27 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015  ’=-1     ’=-1    isomer Ground state rigid rotor  ’=-1    235 U (not coupled bands) K  =1/2+ K  =5/2+ K  =7/2-

28 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015  ’=+1    non-axial  ’=-1    axial  ’=-1    non-axial 235 U (Coupled bands) K  =3/2+K  =7/2+ K  =3/2- K  =7/2- Ground state rigid rotor

29 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June Pu (coupling scheme) GS, K  =1/2+  ’=-1    axial  ’=-1     ’=+1    non-axial

30 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015 DCC OMP LSQ fit for all “optical“ observables (n,n);(p,p);(p,n) RIPL 2408 OMP: rigid rotor R.C., S.Chiba, E.Sh. Soukhovitskii, J.M. Quesada, E. Bauge, Jnst 45 (2008) 333–340

31 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015 DCC OMP low-energy observables RIPL-3: R.C. et al, Nucl. Data Sheets 110 (2009) 3107–3214, online at Yu.V. Porodzinskij, E.Sh. Sukhovitskij and V.M. Maslov, INDC(BLR)-012, IAEA, 1997 S.F. Mughabghab, Atlas of Neutron Resonances, 5th edition, Elsevier, Amsterdam, Cross Section Evaluation Working Group 1991 Report BNL-NCS (ENDF201).

32 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015 New DCC OMP parameterization

33 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015

34 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015 Total cross section differences

35 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015

36 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015 CONCLUSIONS  New DCC OMP with multiple-band coupling derived for nucleon scattering on actinides: 233,235,238 U, 239 Pu, and 232 Th  OMP highlights: Based on dispersive relations and Lane consistent. Least-squares fit of a regional set of OMP parameters from (n,n),(p,p) & (p,n) IAS. CC couplings based on rigid rotor with dynamical corrections with derived selection rules for rotational bands built on vibrational (even-even) or single-particle band- heads (odd nuclei). Energy independent geometry. Ground state deformations close to those predicted by Nix and Moller (FRDM)

37 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015

38 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015 Dispersive relations W V

39 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna, Austria, June 2015 Couplings in (p,n) IAS reactions  C =1.444Z/A 1/ MeV  C ~20 MeV for actinides CC IAS Ground state