Exponential Quasi-interpolatory Subdivision Scheme Yeon Ju Lee and Jungho Yoon Department of Mathematics, Ewha W. University Seoul, Korea
Exponential quasi-interpolatory s.s. Contents Subdivision scheme – several type of s.s. Quasi-interpolatory subdivision scheme Construction Smoothness & accuracy Example Exponential quasi-interpolatory subdivision scheme Construction Smoothness Example
Exponential quasi-interpolatory s.s. Subdivision scheme Useful method to construct smooth curves and surfaces in CAGD The rule :
Exponential quasi-interpolatory s.s. Subdivision scheme Rule : Interpolatory s.s. & Non-interpolatory s.s Stationary s.s. & Non-stationary s.s
Exponential quasi-interpolatory s.s. B-spline subdivision scheme It has maximal smoothness C m-1 with minimal support. It has approximation order only 2 for all m. Cubic-spline :
Exponential quasi-interpolatory s.s. Interpolatory subdivision scheme 4-point interpolatory s.s. : The Smoothness is C 1 in some range of w. The Approximation order is 4 with w=1/16.
Exponential quasi-interpolatory s.s. Goal We want to construct a new scheme which has good smoothness and approximation order.
Exponential quasi-interpolatory s.s. Quasi-interpolatory subdivision scheme Construction
Exponential quasi-interpolatory s.s. Quasi-interpolatory subdivision scheme Advantage L : odd (L+1,L+2)-scheme. So in even pts case, it has tension. L : even (L+2,L+2)-scheme. It has tension in both case. This scheme has good smoothness. It has approximation order L+1.
Exponential quasi-interpolatory s.s. Quasi-interpolatory subdivision scheme The mask set of cubic case In cubic case, the mask can reproduce polynomials up to degree 3. odd case : use 4-pts even case : use 5-pts with tension v
Exponential quasi-interpolatory s.s. Quasi-interpolatory subdivision scheme Various basic limit function which start with
Exponential quasi-interpolatory s.s. Quasi-interpolatory subdivision scheme
Exponential quasi-interpolatory s.s. Quasi-interpolatory subdivision scheme
Exponential quasi-interpolatory s.s. Quasi-interpolatory subdivision scheme Comparison of schemes which use cubic Cubic-spline4-pts interp. s.s.S a Where L=3 Support of limit ftn[-2, 2][-3, 3][-4, 4] Maximal SmoothnessC2C2 C1C1 C3C3 Approximatio n Order 244
Exponential quasi-interpolatory s.s. Example
Comparison with some example Example E= E=0.1428
Exponential quasi-interpolatory s.s. Quasi-interpolatory subdivision scheme General case LMask setSm.Range of tension 3 O=[-1/16,9/16,9/16,-1/16] E= [-v, 4v,1-6v,4v,-v] C3C <v< O=[-v, – 77/2048+5v,385/512-10v, 385/ v,-55/512-5v,35/2048+v] E(i)=O(7-i) for i=1:6 C3C <v< O=[3, – 25,150,150, – 25,3]/256] E=[-v,6v, – 15v,1+20v,-15v,6v,-v] C4C <v< O=[-v,385/ v, – 2079/ v, 51975/ v,5775/ v, -7245/ v,945/ v,-231/65536+v] E(i)=O(9-i) for i=1:8 C4C <v< O=[-5,49, – 245,1225,1225, – 245,49, – 5]/2048 E=[-v, 8v, – 28v,56v,1-70v,56v, – 28v,8v, – v] C5C <v<0.0015
Exponential quasi-interpolatory s.s. Construction
Exponential quasi-interpolatory s.s. Analysis of non-stationary s.s.
Exponential quasi-interpolatory s.s.
Example E=7.7716e-016 E=0.1434
Exponential quasi-interpolatory s.s. Next Study