Fermi-Luttinger Liquid Michael Pustilnik, Georgia Tech

Slides:



Advertisements
Similar presentations
Heat flow in chains driven by noise Hans Fogedby Aarhus University and Niels Bohr Institute (collaboration with Alberto Imparato, Aarhus)
Advertisements

Bare Surface Tension and Surface Fluctuations of Clusters with Long–Range Interaction D.I. Zhukhovitskii Joint Institute for High Temperatures, RAS.
Many-body dynamics of association in quantum gases E. Pazy, I. Tikhonenkov, Y. B. Band, M. Fleischhauer, and A. Vardi.
Quantum Critical Behavior of Disordered Itinerant Ferromagnets D. Belitz – University of Oregon, USA T.R. Kirkpatrick – University of Maryland, USA M.T.
Exact results for transport properties of one-dimensional hamiltonian systems Henk van Beijeren Institute for Theoretical Physics Utrecht University.
Superconductivity in Zigzag CuO Chains
Magnetism in systems of ultracold atoms: New problems of quantum many-body dynamics E. Altman (Weizmann), P. Barmettler (Frieburg), V. Gritsev (Harvard,
Nonequilibrium dynamics of ultracold atoms in optical lattices. Lattice modulation experiments and more Ehud Altman Weizmann Institute Peter Barmettler.
Lattice modulation experiments with fermions in optical lattice Dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University.
Tunneling through a Luttinger dot R. Egger, Institut für Theoretische Physik Heinrich-Heine-Universität Düsseldorf M. Thorwart, S. Hügle, A.O. Gogolin.
Singularities in hydrodynamics of degenerate 1D quantum systems P. Wiegmann Together with Abanov.
Fermi-Dirac distribution function
E. Altman (Weizmann), P. Barmettler (Frieburg), V. Gritsev (Harvard, Freiburg), E. Dalla Torre (Weizmann), T. Giamarchi (Geneva), M. Lukin (Harvard), A.Polkovnikov.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
5/2/2007Cohen Group Meeting1 Luttinger Liquids Kevin Chan Cohen Group Meeting May 2, 2007.
Interference between fluctuating condensates Anatoli Polkovnikov, Boston University Collaboration: Ehud Altman-Weizmann Eugene Demler - Harvard Vladimir.
Nonequilibrium dynamics of ultracold atoms in optical lattices
Hawking radiation in 1D quantum fluids Stefano Giovanazzi bosons fermionsvs Valencia 2009.
Many-body dynamics of association in quantum gases E. Pazy, I. Tikhonenkov, Y. B. Band, M. Fleischhauer, and A. Vardi.
Nonequilibrium dynamics of ultracold atoms in optical lattices. Lattice modulation experiments and more Ehud Altman Weizmann Institute Peter Barmettler.
Nonequilibrium dynamics of bosons in optical lattices $$ NSF, AFOSR MURI, DARPA, RFBR Harvard-MIT Eugene Demler Harvard University.
Nonequilibrium dynamics of ultracold atoms in optical lattices David Pekker, Rajdeep Sensarma, Takuya Kitagawa, Susanne Pielawa, Vladmir Gritsev, Mikhail.
Interference of fluctuating condensates Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir Gritsev Harvard Mikhail Lukin.
T. Kitagawa (Harvard), S. Pielawa (Harvard), D. Pekker (Harvard), R. Sensarma (Harvard/JQI), V. Gritsev (Fribourg), M. Lukin (Harvard), Lode Pollet (Harvard)
Dissipative quantum dynamics simulations Reinhold Egger Institut für Theoretische Physik Heinrich-Heine-Universität Düsseldorf C.H. Mak, L. Mühlbacher,
Dynamics of repulsively bound pairs in fermionic Hubbard model David Pekker, Harvard University Rajdeep Sensarma, Harvard University Ehud Altman, Weizmann.
Entanglement Entropy Scaling Laws and Eigenstate Thermalization in Many-Particle Systems Kun Yang National High Magnetic Field Lab and Florida State University.
System and definitions In harmonic trap (ideal): er.
Impurities and finite temperature effects in a one-dimensional spin-1 antiferromagnet Coherent excitations in Y 2 BaNiO 5 Loss of coherence for T>0 Chain-end.
Strongly interacting scale-free matter in cold atoms Yusuke Nishida March 12, MIT Faculty Lunch.
Less is more and more is different. Jorn Mossel University of Amsterdam, ITFA Supervisor: Jean-Sébastien Caux.
LUTTINGER LIQUID Speaker Iryna Kulagina T. Giamarchi “Quantum Physics in One Dimension” (Oxford, 2003) J. Voit “One-Dimensional Fermi Liquids” arXiv:cond-mat/
Composite Fermion Groundstate of Rashba Spin-Orbit Bosons Alex Kamenev Fine Theoretical Physics Institute, School of Physics & Astronomy, University of.
Many-body quench dynamics in ultracold atoms Surprising applications to recent experiments $$ NSF, AFOSR MURI, DARPA Harvard-MIT Eugene Demler (Harvard)
Valence Photoemission Spectroscopy and the Many-Body Problem Nicholas S. Sirica December 10, 2012.
Quantum Shock Waves Hydrodynamic Singularities in Degenerate 1D quantum systems P. Wiegmann Together with Alexander Abanov.
Quantum Monte Carlo methods applied to ultracold gases Stefano Giorgini Istituto Nazionale per la Fisica della Materia Research and Development Center.
Solving Impurity Structures Using Inelastic Neutron Scattering Quantum Magnetism - Pure systems - vacancies - bond impurities Conclusions Collin Broholm*
Physics and Astronomy Dept. Kevin Strecker, Andrew Truscott, Guthrie Partridge, and Randy Hulet Observation of Fermi Pressure in Trapped Atoms: The Atomic.
Exact bosonization for interacting fermions in arbitrary dimensions. (New route to numerical and analytical calculations) K.B. Efetov, C. Pepin, H. Meier.
Hybrid Bose-Fermi systems
Finite Temperature Spin Correlations in Quantum Magnets with a Spin Gap Collin Broholm* Johns Hopkins University and NIST Center for Neutron Research *supported.
Eiji Nakano, Dept. of Physics, National Taiwan University Outline: 1)Experimental and theoretical background 2)Epsilon expansion method at finite scattering.
Unitarity potentials and neutron matter at unitary limit T.T.S. Kuo (Stony Brook) H. Dong (Stony Brook), R. Machleidt (Idaho) Collaborators:
Exact results for transport properties of one-dimensional hamiltonian systems Henk van Beijeren Institute for Theoretical Physics Utrecht University.
Impurities and finite temperature effects in a one-dimensional spin-1 antiferromagnet Coherent excitations in Y 2 BaNiO 5 Loss of coherence for T>0 Chain-end.
VERSITET NIKOLAJ THOMAS ZINNER DEPARTMENT OF PHYSICS AND ASTRONOMY AARHUS UNIVERSITET OCTOBER UNI STRONGLY INTERACTING QUANTUM PARTICLES IN ONE.
An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.
Holes in a Quantum Spin Liquid Collin Broholm * Johns Hopkins University and NIST Center for Neutron Research Y 2-x Ca x BaNiO 5 *supported by NSF DMR
Anisotropic exactly solvable models in the cold atomic systems Jiang, Guan, Wang & Lin Junpeng Cao.
Coupling quantum dots to leads:Universality and QPT
V.M. Sliusar, V.I. Zhdanov Astronomical Observatory, Taras Shevchenko National University of Kyiv Observatorna str., 3, Kiev Ukraine
Hidden topological order in one-dimensional Bose Insulators Ehud Altman Department of Condensed Matter Physics The Weizmann Institute of Science With:
Electronic transport in one-dimensional wires Akira Furusaki (RIKEN)
The Center for Ultracold Atoms at MIT and Harvard Strongly Correlated Many-Body Systems Theoretical work in the CUA Advisory Committee Visit, May 13-14,
Structure and dynamics of spin polarons induced by doping a Haldane spin-1 chain Collin Broholm * Johns Hopkins University and NIST Center for Neutron.
Condensed Matter Physics: Quantum Statistics & Electronic Structure in Solids Read: Chapter 10 (statistical physics) and Chapter 11 (solid-state physics)
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
NTNU, April 2013 with collaborators: Salman A. Silotri (NCTU), Chung-Hou Chung (NCTU, NCTS) Sung Po Chao Helical edge states transport through a quantum.
Exact vector channel sum rules at finite temperature Talk at the ECT* workshop “Advances in transport and response properties of strongly interacting systems”
One Dimensional Magnetic Systems Strong Fluctuations in Condensed Matter Magnetism in one dimension Pure systems Doped systems Magnetized states Conclusions.
Collin Broholm * Johns Hopkins University and NIST Center for Neutron Research Y. Chen LANL M. Kenzelmann JHU & NIST C. P. LandeeClarke University K. Lefmann.
Density imbalanced mass asymmetric mixtures in one dimension
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev
RESONANT TUNNELING IN CARBON NANOTUBE QUANTUM DOTS
Experimental Evidences on Spin-Charge Separation
Christian Scheller
Novel quantum states in spin-orbit coupled quantum gases
Fermi statistics and Bose Statistics
Tunneling through a Luttinger dot
Presentation transcript:

Fermi-Luttinger Liquid Michael Pustilnik, Georgia Tech Alex Kamenev in collaboration with Leonid Glazman, U of M Maxim Khodas, U of M Michael Pustilnik, Georgia Tech PRL 96, 196405 (2006); arXiv:cond-mat/0702.505 arXiv:cond-mat/0705.2015 RPMBT14, Jul., 2007

One-dimensional … M. Chang, et al 1996 Dekker et al 1997 Bockrath, et al 1997 Auslaender et al 2004 I. Bloch 2004

Spectral Function

d>1: Fermi Liquid Energy relaxation rate: The same for holes Spectral density: Energy relaxation rate: interaction potential The same for holes

d=1 Spectral density: ? ? Energy relaxation rate:

Luttinger model Energy relaxation rate: Spectral density: Dzaloshinskii, Larkin 1973 Spectral density: Energy relaxation rate:

Luttinger model (cont) Haldane, 1983

1D with non-linear dispersion: Holes

1D with non-linear dispersion: Particles Energy relaxation rate: interaction potential Does not work for integrable models

Particles (cont) Fermi head with the Luttinger tail

Spectral Edges Shake up or X-ray singularity (cf. Mahan, Nozieres,…)

Structure Factor

Luttinger approximation Linear dispersion Exact result within the Luttinger approximation. How does the dispersion curvature and interactions affect the structure factor ?

Spectrum curvature + interactions Fourier components of the interaction potential V

AFM spin chain N 200. For this case we have calculated 2 200 000 form factors S. Nagler, et al 2005

1D Bose Liquid Bose-Fermi mapping (1D) Bosons with the strong repulsion = Fermions with the weak attraction – changes sign. Bose-Fermi mapping (1D) 1D hard-core bosons = free fermions (Tonks-Girardeau) Divergence at the upper edge Caux, Calabrese, 2006 Lieb-Liniger model, 1963 Constant-q scan

Structure factor: conclusions Power law singularities at the spectral edges (Lieb modes) with q-dependent exponents. Bosons Fermions

Fermi-Luttinger Liquid Hole’s mass-shell is described by the Luttinger liquid (with momentum-dependent exponent). Particle’s mass-shell is described by the Fermi liquid (with smaller relaxation rate). Spectral edges of the spectral function and the structure factor exhibit power-law singularities.

Summary of bosonic exponents Boson-Fermion mapping Hydrodynamics ?

Numerics (preliminary) Courtesy of J-S. Caux

Numerics (preliminary) Courtesy of J-S. Caux