Development of a gamma-ray imager using a large area monolithic 4x4 MPPC array for a future PET scanner Takeshi Nakamori T. Kato, J. Kataoka, T. Miura,

Slides:



Advertisements
Similar presentations
Recent news about SiPM based applications R&D in DESY Nicola D’Ascenzo University of Hamburg - DESY.
Advertisements

The Multi-Pixel Photon Counter for the GLD Calorimeter Readout Jul Satoru Uozumi University of Tsukuba, Japan 1.Introduction 2.Recent.
Study of the MPPC Performance - contents - Introduction Fundamental properties microscopic laser scan –check variation within a sensor Summary and plans.
Performance of MPPC using laser system Photon sensor KEK Niigata university, ILC calorimeter group Sayaka IBA, Hiroaki ONO, Paul.
*Shuji Maeo 1,2, Takayuki Yanagida 1, Yuui Yokota 1 and Akira Yoshikawa 1,3 1 Division of Physical Process Design, Institute of Multidisciplinary Research.
Andrei Nomerotski 1 Instrumentation for Medical Applications Andrei Nomerotski (Oxford Particle Physics) VC Forum, 17 November 2009.
Observation of Fast Scintillation of Cryogenic PbI 2 with VLPCs William W. Moses, 1* W.- Seng Choong, 1 Stephen E. Derenzo, 1 Alan D. Bross, 2 Robert Dysert,
1 A Design of PET detector using Microchannel Plate PMT with Transmission Line Readout Heejong Kim 1, Chien-Min Kao 1, Chin-Tu Chen 1, Jean-Francois Genat.
Performance Evaluation of SiPM Arrays under Strong Magnetic Fields
Design and test of a high-speed beam monitor for hardon therapy H. Pernegger on behalf of Erich Griesmayer Fachhochschule Wr. Neustadt/Fotec Austria (H.
A High-speed Adaptively-biased Current- to-current Front-end for SSPM Arrays Bob Zheng, Jean-Pierre Walder, Henrik von der Lippe, William Moses, Martin.
Qualification Test of a MPPC-based PET Module for Future MRI-PET Scanners Yohta KUREI J.Kataoka, T.Kato, T.Fujita, H.Funamoto, T.Tsujikawa (Waseda Univ.)
■ TOF-PET Imaging t1 t2  d = c x  t /2 When  t = 300 ps ➔  d = 4.5 cm Timing resolution required for MPPC Timing resolution required for MPPC ≤ 200.
Photon detection Visible or near-visible wavelengths
The Transverse detector is made of an array of 256 scintillating fibers coupled to Avalanche PhotoDiodes (APD). The small size of the fibers (5X5mm) results.
Report on SiPM Tests SiPM as a alternative photo detector to replace PMT. Qauntify basic characteristics Measure Energy, Timing resolution Develop simulation.
1 Performance of multi-anode PMT employing an ultra bi-alkali photo-cathode and rugged dynodes Takahiro Toizumi Tokyo Institute of Technology S. Inagwa.
Fast Detectors for Medical and Particle Physics Applications Wilfried Vogel Hamamatsu Photonics France March 8, 2007.
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK) for KEKDTP photon sensor group.
SiPM: Development and Applications
The MPPC Study for the GLD Calorimeter Readout Introduction Measurement of basic characteristics –Gain, Noise Rate, Cross-talk Measurement of uniformity.
A novel gamma-ray detector with sub-millimeter resolutions using a monolithic MPPC array with pixelized Ce:LYSO and Ce:GGAG scintillators Takuya Kato J.Kataoka,
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
R&D of MPPC for T2K experiment PD07 : Photosensor Workshop /6/28 (Thu) S.Gomi T.Nakaya M.Yokoyama H.Kawamuko ( Kyoto University ) T.Nakadaira.
Study of the MPPC performance - R&D status for the GLD calorimeter readout – Nov 6-10.
Study of the Multi-Pixel Photon Counter for ILC calorimeter Satoru Uozumi (Kobe University) Atami Introduction of ILC and MPPC The MPPC performance.
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK)
1 SiPM Gain Test SiPM Multiple APD pixels operating at Geiger mode. Output is the sum of the outputs from all APD pixels. Advantages Compact size High.
1 Development of Multi-Pixel Photon Counters (1) S.Gomi, T.Nakaya, M.Yokoyama, M.Taguchi, (Kyoto University) T.Nakadaira, K.Yoshimura, (KEK) Oct
Optimization of Detectors for Time of Flight PET Marek Moszyński, Tomasz Szczęśniak, Soltan Institute for Nuclear Studies, Otwock-Świerk, Poland.
Seoul National University Functional & Molecular Imaging System Lab Progress in Nuclear Imaging Mikiko Ito, PhD Dept. of Nuclear Medicine, Seoul National.
MPPC status M.Taguchi(kyoto) T2K ND /7/7.
Development of Multi-Pixel Photon Counters(MPPC) Makoto Taguchi Kyoto University.
Status of photon sensor study at Niigata University -- SiPM and MPPC -- Photon sensor mini workshop 05/9/16 University Niigata University.
Development of Multi-Pixel Photon Counters and readout electronics Makoto Taguchi High Energy Group.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group (KNU, Kobe, Niigata, Shinshu, ICEPP.
Timing Studies of Hamamatsu MPPCs and MEPhI SiPM Samples Bob Wagner, Gary Drake, Patrick DeLurgio Argonne National Laboratory Qingguo Xie Department of.
Multipixel Geiger mode photo-sensors (MRS APD’s) Yury Kudenko ISS meeting, KEK, 25 January 2006 INR, Moscow.
Lecture 3-Building a Detector (cont’d) George K. Parks Space Sciences Laboratory UC Berkeley, Berkeley, CA.
Prospects to Use Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC A. Nepomuk Otte Max-Planck-Institut für Physik München.
SiPM for CBM Michael Danilov ITEP(Moscow) Muon Detector and/or Preshower CBM Meeting ITEP
Scintillators suitable for PET applications must be characterized by a high efficiency for gamma-ray detection, determined by a high density and atomic.
1 RGB_HD SiPM Red-Green-Blue High Density SiPM SiPM: size: 4x4mm 2 cell size: 30x30um 2 # cells: ~17000 SiPM: size: 2.2x2.2mm 2 cell size: 15x15um 2 #
Peter Dendooven LaBr 3 and LYSO monolithic crystals coupled to photosensor arrays for TOF-PET Physics for Health in Europe Workshop February 2-4, 2010,
Jean-François Genat Fast Timing Workshop June 8-10th 2015 FZU Prague Timing Methods with Fast Integrated Technologies 1.
Development of large-area reverse-type APD arrays
1 Rome, 14 October 2008 Joao Varela LIP, Lisbon PET-MRI Project in FP7 LIP Motivations and Proposals.
Performance of Scintillator-Strip Electromagnetic Calorimeter for the ILC experiment Satoru Uozumi (Kobe University) for the CALICE collaboration Mar 12.
Jet Energy Measurement at ILC Separation of jet particles in the calorimeter is required for the PFA  Fine granular calorimeter is necessary. Particle.
The Multi-Pixel Photon Counter for the GLD Calorimeter Readout Jul Satoru Uozumi University of Tsukuba, Japan for the GLD Calorimeter.
Study and Development of the Multi-Pixel Photon Counter for the GLD Calorimeter Satoru Uozumi (Shinshu, Japan) on behalf of the GLD Calorimeter Group Oct-9.
Update on works with SiPMs at Pisa Matteo Morrocchi.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
Development of UV-sensitive MPPC for upgrade of liquid xenon detector in MEG experiment Daisuke Kaneko, on behalf of the MEG Collaboration µ γ Liquid xenon.
Silicon Photomultiplier Development at GRAPES-3 K.C.Ravindran T.I.F.R, OOTY WAPP 2010 Worshop On behalf of GRAPES-3 Collaboration.
GSI 9Feb09 NMI3 – Integrated Infrastructure Initiative for Neutron Scattering and Muon Spectroscopy, Joint Research Activity (JRA8): MUON-S. Contract:
SiPM Workshop EU-FP7(HP3), Vienna, 16 Feb F.G. H.O. Study of scintillator detectors time resolution with different SiPM readout on T10 test beam.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK) for KEKDTP photon sensor group.
M.Taguchi and T.Nobuhara(Kyoto) HPK MPPC(Multi Pixel Photon Counter) status T2K280m meeting.
Study of the Radiation Damage of Hamamatsu Silicon Photo Multipliers Wander Baldini Istituto Nazionale di Fisica Nucleare and Universita’ degli Studi di.
Development of Multi-Pixel Photon Counters (1)
FINAL YEAR PROJECT 4SSCZ
Fast SiPM readout for PET
大強度
On behalf of the GECAM group
X. Zhu1, 3, Z. Deng1, 3, A. Lan2, X. Sun2, Y. Liu1, 3, Y. Shao2
R&D of MPPC in kyoto M.taguchi.
The MPPC Study for the GLD Calorimeter Readout
Presentation transcript:

Development of a gamma-ray imager using a large area monolithic 4x4 MPPC array for a future PET scanner Takeshi Nakamori T. Kato, J. Kataoka, T. Miura, H. Matsuda (Waseda U), K. Sato, Y. Ishikawa, K. Yamamura, N. Kawabata (Hamamatsu), H. Ikeda, G. Sato (ISAS/JAXA), K. Kamada (Furukawa Co., Ltd.) 12 September 2011 Position Sensitive Detectors Aberystwyth

Contents PET and Semiconductor sensors Performance of the MPPC array Charge division readout Other applications Summary 2

PET and our approach Semiconductor photosensors are promising & successful Positron Emission Tomography : e + e - →  imaging  Compactness, low power, mass productivity, easy handling…  Insensitive to magnetic fields  APD-PET project → Realized large number of channels, fine/complex configurations → “DOI-PET” → “MRI-PET” → dedicated LSI (Koizumi+10) → sub-mm resolution (Kataoka+10) → >a few ns time res. (Matsuda) Kataoka+10 16x16 APDs MPPC can overcome !! PET module 22 Na image TOF DOI 3 TOF & DOI information improve position accuracy

Muti-Pixel Photon Counter  2D-array of APDs operated in Geiger mode  Charges proportional to the number of fired APDs  low bias voltage (<100V)  high gain ( )  Insensitive to magnetic field 4

Characteristics summary PMTPDAPDMPPC Gain Q.E. (PDE)>25>80>25 Volumelargesmall Interfered by BYesNo Structurecomplexsimple Power Consumptionhighlow better for PET MPPC vs APD  higher gain, doesn’t need CSAs  much better S/N  much better timing resolution (suit for TOF-PET, next slide)  less photo-detection efficiency  worse energy resolution (see Poster [20] by Miura )  narrower dynamic range due to the limited number of pixels  need linearity correction 5

TOF Timing resolution CFD delay TAC MCA 22 Na MPPC or APD MPPC (G=9x10 5 ): 624ps (FWHM) APD (G=50): 5300ps (FWHM) LYSO APD : Charge Sensitive Amp. MPPC: Current Amp. MPPC APD Kato APDs always require CSA that limits time resolution. 6

The Monolithic Array  4x4 array with 3x3 mm2 pixel  0.2 mm gap  50 um type (3600 APDs/pixel)  16 anodes, common cathode  A bit high dark count rate 20 o C (t his was the first prototype: ~400 kHz in recent products) Gain (10 5 ) Bias Voltage (V) Gain map ( 71.9V, 0 o C ) 7.2% ave. gain = 9.7x Kato+11, NIM A

Scintillator array Kamada+10 Pr:LuAG Pr:LuAG+WLS 3x3x10 mm 3 crystals 4x4 arrays 0.2 mm-thick BaSO 4 reflector  LYSO(Ce)  LuAG(Pr)  LuAG(Pr) + WLS coating Wavelength (nm) Relative light yield (in this work) LYSOLuAG LuAG+WLS 310nm420nm (HPK; 1x1 mm 2 type)  = 7.1g/cc  = 40ns 25 kph/MeV  = 6.7g/cc  = 20ns 20 kph/MeV faster (better time res.) 8

Energy spectra Kato+11 LYSO LuAG LYSO :13.8% LuAG :14.7% LuAG+WLS :14.0% LuAG+WLS  137 Cs source, 0 o C, 71.9V  w/o current amplifier  Linearity corrected  Discrete readout with Q-ADC Energy resolution for 662 keV: 9

Kato+11 Charge spectra  WLS enhanced the light yields detected by ~30%  Still much less than LYSO  Yet we prefer LuAG for better timing resolution  “UV-enhanced MPPC” could be a solution Yoshino+11 channel A-1 10 Q.E. of UV-enhanced APD 310nm

Charge division readout  Can reduce the number of read out  Often applied for MAPMT  0 o C, 71.9V, LYSO array, 137 Cs  Interaction positions are nicely resolved  Spectra from each pixel extracted X position (arb unit) Y position (arb. unit) 11 LYSO ave.  E/E ~ 9.9 %(FWHM) ave. FHWM ~ x:0.274, y:0.263 mm Kato

Optimization of R-chain  Minimize averaged FWHM (mm) from X- and Y-projection :  Too many degrees of freedom  Just tried 3 criteria with Rx and Ry 12 Rx Ry (Rx=Ry) (Rx=39  ) (Rx/Ry=1/2) averaged FWHM (mm) Rx (  )Ry (  )Rx (  ) r y x r y x r y x (Rx, Ry)= (51 , 100  ) is the best here, but there could be better ones… 80  51   r = sqrt(  x 2 +  y 2 )

S Our efforts Gamma-ray measurement PET application Better pos. res. TOF Low threshold Kato+11 (in prep) Miura+ 4x4 + FPC dedicated “fast” LSI Coincidence technique Waveform-DAQ BG surpression Phoswitch counter MPPCs development Matsuda+11 (in prep) Sub-mm LYSO array Poster [20] by Miura DOI Miura+ 13 Buttable 8x8 Waveform-DAQ signal precision

Waveform acquisition 14  Domino Ring Sampler 4 : Fast analog memory LSI  developed for particle experiments (MEG, MAGIC,..)  Low cost, low power : 140 mW/8ch  fast sampling : Max 5 GHz, 1 V/12 bit Time (ns) Voltage (mV)  Suit for large number of channels  Digital filtering & noise reduction  Capable of pulse shape discrimination  etc… lots of potential Applicable to (DOI-)PET ! Demonstration  3x3mm 2 MPPC + LYSO  w/ current amp.  20 o C, G=7.5e5  Spectra obtained  Noise level reduced 137 Cs 109 Cd Energy (keV) Q-ADC waveform (S. Ritt+) 662keV 88 keV 22 keV (digital filtered)

Summary  MPPC is a promising photosensor, especially for TOF-PET scanner  We developed a monolithic 4x4 MPPC array to be applied for PET  We showed the performance of the array as a gamma-ray detector  LYSO(Ce) is better than LuAG(Pr) at this moment, even with the wavelength shifter  We also demonstrated the charge division readout which works well.  Lots of wonderful results will be published soon ! 15