The shockwave impact upon the Diffuse Supernova Neutrino Background GDR Neutrino, Ecole Polytechnique Sébastien GALAIS S. Galais, J. Kneller, C. Volpe.

Slides:



Advertisements
Similar presentations
Collective oscillations of SN neutrinos :: A three-flavor course :: Amol Dighe Tata Institute of Fundamental Research, Mumbai Melbourne Neutrino Theory.
Advertisements

George M. Fuller Department of Physics & Center for Astrophysics and Space Science University of California, San Diego Supernova Physics and DUSEL UCLA/UCSD.
A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy Institute for Nuclear Research, RAS, Moscow, Russia.
The Role of Neutrinos in Astrophysics A.B. Balantekin University of Wisconsin GDR Neutrino Laboratoire Astroparticule et Cosmologie.
Georg Raffelt, Max-Planck-Institut für Physik, München, Germany TAUP 2007, September 2007, Sendai, Japan Collective Flavor Oscillations Georg Raffelt,
Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Collective Supernova Neutrino Oscillations.
Neutrino oscillations in oxygen-neon-magnesium supernovae Cecilia Lunardini Arizona State University And RIKEN-BNL Research Center C.L., B. Mueller and.
The effect of turbulence upon supernova neutrinos Jim Kneller NC State University NOW 2010.
The Diffuse Supernova Neutrino Background Louie Strigari The Ohio State University Collaborators: John Beacom, Manoj Kaplinghat, Gary Steigman, Terry Walker,
Damping of neutrino flavor conversion in the wake of the supernova shock wave by G.L. Fogli, E. Lisi, D. Montanino, A. Mirizzi Based on hep-ph/ :
Alessandro MIRIZZI Dip.to di Fisica & Sez. INFN, Bari, Italy SUPERNOVA NEUTRINO PHYSICS WITH A MEGATON DETECTOR NOW 2004 Neutrino Oscillation Workshop.
IceCube IceCube Neutrino-Trigger network of optical telescopes Anna Franckowiak 1, Timo Griesel 2, Lutz Koepke 2, Marek Kowalski 1, Thomas Kowarik 2, Anna.
Sergio Palomares-Ruiz November 17, 2008 Dark Matter Annihilation/Decay Scenarios Novel Searches for Dark Matter with Neutrino Telescopes Columbus, OH (USA)
1 Detecting Supernova Neutrinos X.-H. Guo Beijing Normal University.
Diffuse supernova neutrino flux Cecilia Lunardini Arizona State University And RIKEN BNL Research Center UCLA, September 2009.
Diffuse supernova neutrinos at underground laboratories Cecilia Lunardini Arizona State University And RIKEN BNL Research Center INT workshop “Long-Baseline.
Melbourne Neutrino Theory Workshop, June ROLE OF DENSE MATTER IN COLLECTIVE NEUTRINO TRANSFORMATIONS Sergio Pastor (IFIC Valencia) in collaboration.
LENA Low Energy Neutrino Astrophysics L. Oberauer, Technische Universität München LENA Delta EL SUD Meeting.
SUPERNOVA NEUTRINOS AT ICARUS
TAUP2007 Sep , 2007 Sendai, Japan Shiou KAWAGOE The Graduate University for Advanced Studies (SOKENDAI) / NAOJ JSPS Research Fellow T. Kajino, The.
M. Selvi – 17/09/04 – NOW 2004 – Supernova neutrino detection Supernova neutrino detection Marco Selvi Bologna University & INFN.
Cristina VOLPE (Institut de Physique Nucléaire Orsay, France) Search for CP violation in the lepton sector.
Neutrino oscillation physics II Alberto Gago PUCP CTEQ-FERMILAB School 2012 Lima, Perú - PUCP.
February 23, 2005Neutrino Telescopes, Venice Comparing Solar and KamLAND Data Comparing Solar and KamLAND Data Carlos Pena Garay IAS, Princeton ~
Heidelberg, 9-12 November 2009 LAUNCH 09 Physics and astrophysics of SN neutrinos: What could we learn ? Alessandro MIRIZZI (Hamburg Universität)
Cristina VOLPE (Institut de Physique Nucléaire Orsay, France) Challenges in neutrino (astro)physics.
LAGUNA Large Apparatus for Grand Unification and Neutrino Astrophysics Launch meeting, Heidelberg, March 2007, Lothar Oberauer, TUM.
Daniele Montanino Università degli Studi di Lecce & Sezione INFN, Via Arnesano, 73100, Lecce, Italy Supernova neutrinos: oscillations.
LSc development for Solar und Supernova Neutrino detection 17 th Lomonosov conference, Moscow, August 2015 L. Oberauer, TUM.
Long Baseline Neutrino Beams and Large Detectors Nicholas P. Samios Istanbul, Turkey October 27, 2008.
Extrapolation Neutrino Flux measured at Near Detector to the Far Detector Near Detector Workshop, CERN, 30 July 2011 Paul Soler, Andrew Laing.
Neutrino oscillation physics Alberto Gago PUCP CTEQ-FERMILAB School 2012 Lima, Perú - PUCP.
ORCA simulations - First steps J. Brunner 06/09/2012.
Core-collapse supernova neutrinos, neutrino properties and… CP violation Cristina VOLPE (Institut de Physique Nucléaire Orsay, FRANCE)
Determining the Neutrino Hierarchy From a Galactic Supernova David Webber APS April Meeting May 3, 2011 SN 1572 “Tycho’s Nova” 7,500 light years (2.3 kPc)
S.P.Mikheyev INR RAS1 ``Mesonium and antimesonium’’ Zh. Eksp.Teor. Fiz. 33, 549 (1957) [Sov. Phys. JETP 6, 429 (1957)] translation B. Pontecorvo.
Detection of the Diffuse Supernova Neutrino Background in LENA & Study of Scintillator Properties Michael Wurm DPG Spring Meeting, E15.
Determining the neutrino hierarchy from a galactic supernova using a next-generation detector David M. Webber APS April Meeting May 3, 2011 SN 1572 “Tycho’s.
M. Selvi – 17 th June 2005 – Round Table in honour of prof. Koshiba e e x Supernova neutrino detection: present status and new ideas Marco Selvi Bologna.
Aart Heijboer ● ORCA * catania workshop sep statistical power of mass hierarchy measurement (with ORCA) Aart Heijboer, Nikhef.
Prospects of supernova neutrino observation by large detectors Hisakazu Minakata Tokyo Metropolitan University Hisakazu Minakata Tokyo Metropolitan University.
Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Crab Nebula Neutrino Champagne, LowNu2009, 19  21 Oct.
ORCA from ANTARES modules J. Brunner 06/10/2012. Detector Hexagonal layout a la IceCube 37 lines, distance 20m 25 ANTARES storeys  z = 4.5m Equipped.
Solar Neutrino Results from SNO
Basudeb Dasgupta, JIGSAW 2007 Mumbai Phase Effects in Neutrinos Conversions at a Supernova Shockwave Basudeb Dasgupta TIFR, Mumbai Joint Indo-German School.
元素合成元素合成 と ニュトリ ノ Nucleosynthesis and Neutrinos A.B. Balantekin.
Cristina VOLPE (AstroParticule et Cosmologie -APC) Open issues in neutrino flavor conversion in media.
Diffuse supernova neutrinos Cecilia Lunardini Arizona State University And RIKEN BNL Research Center.
Rencontres de Moriond, March 2010 Electroweak Interactions and Unified Theories Neutrinos from Supernovae Basudeb Dasgupta Max Planck Institute for.
Marcos DRACOS IPHC-IN2P3/CNRS Université de Strasbourg
Waseda univ. Yamada lab. D1 Chinami Kato
Core-Collapse Supernovae and Supernova Relic Neutrinos
n Recent advances in neutrino (astro)physics Cristina VOLPE
Jonathan Davis King’s College London
(Xin-Heng Guo, Bing-Lin Young) Beijing Normal University
The Diffuse Flux of Supernova Neutrinos
MEMPHYS non-oscillation physics
SOLAR ATMOSPHERE NEUTRINOS
International School of Nuclear Physics 39th Course, Erice-Sicily, Sep
Neutrino astronomy Measuring the Sun’s Core
Understanding Earth Matter Effect in Neutrino Oscillation
neutrino flavor conversion in media
Non-Standard Interactions and Neutrino Oscillations in Core-Collapse Supernovae Brandon Shapiro.
SOLAR ATMOSPHERE NEUTRINOS
(Institut de Physique Nucléaire Orsay, France)
The neutrino mass hierarchy and supernova n
Neutrino oscillation physics
Determination of Neutrino Mass Hierarchy at an Intermediate Baseline
Feasibility of geochemical galactic neutrino flux measurement
Low Energy Neutrino Astrophysics
Presentation transcript:

The shockwave impact upon the Diffuse Supernova Neutrino Background GDR Neutrino, Ecole Polytechnique Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava Phys.Rev.D81:053002,2010 / arxiv: [hep-ph]

Plan  Diffuse Supernova Neutrino Background (DSNB)  Motivations o Introduction  The neutrino self-interaction  The shockwave effects in supernova o Theoretical Framework  on the fluxes  on the events rates o Results o Simplified model to reproduce the shockwave effects

Introduction Introduction Theoretical Framework Results Simplified Model Conclusions neutrinos Neutron Star  1.The interaction : neutrinos interact each other giving rise to collective effects. - J. T. Pantaleone, Phys. Rev. D (1992). - S. Samuel, Phys. Rev. 48, 1462 (1993). - G. Sigl and G. G. Raffelt, Nucl. Phys. B (1993). - Y. Z. Qian and G. M. Fuller, Phys. Rev. D (1995). - H. Duan, G. M. Fuller, J. Carlson, and Y.-Z. Qian, Phys. Rev. 74, (2006), ,… Neutrino -sphere Core-collapse supernova explosion 99 % of the energy is released by (anti)neutrinos of all flavors (about ergs for about 10 seconds).

Introduction neutrinos Neutron Star  matter 2. The shockwave effects : The shock will modify the density profile and therefore the MSW resonance. - R. C. Schirato and G. M. Fuller (2002), C. Lunardini and A. Y. Smirnov, JCAP 0306, 009 (2003), G. L. Fogli, E. Lisi, A. Mirizzi, and D. Montanino, Phys. Rev. 68, (2003), J. P. Kneller, G. C. McLaughlin, and J. Brockman, Phys. Rev. 77, (2008), … Neutrino -sphere MSW Introduction Theoretical Framework Results Simplified Model Conclusions

Diffuse Supernova Neutrino Background (DSNB) Supernova explosion  Neutrinos are emitted with a Fermi-Dirac distribution: from a localized region. during a finite time. Introduction Theoretical Framework Results Simplified Model Conclusions

 Neutrinos are emitted with a Fermi-Dirac distribution: from all directions (past and invisible SN). the background is there. DSNB  Energies are redshifted due the distance between the SN and Earth: Much progress have been done on its ingredients such as star formation rate. - S. Ando and K. Sato, New Journal of Physics 6, 170 (2004), L. E. Strigari, J. F. Beacom, T. P. Walker and P. Zhang, JCAP 0504, 017 (2005), C. Lunardini, Astroparticle Physics 26, 190 (2006), H. Yüksel and J. F. Beacom, Phys. Rev. 76, (2007), ) - … Introduction Theoretical Framework Results Simplified Model Conclusions

Motivations  Numerical simulations are close to the upper limits for relic neutrinos fluxes (Super Kamiokande, LSD).  Detection window for relic neutrinos. Introduction Theoretical Framework Results Simplified Model Conclusions

 Future observatories should be able to observe these fluxes. MEMPHYS: 440 kTon Water Čerenkov detector. Main detection channel: GLACIER: 100 kTon liquid argon detector. Main detection channel: Our aim is to explore: 1)the shockwave effects (in the supernova) upon the DSNB. 2)the sensitivity to the oscillations parameters (Hierarchy,  13,  phase). LENA: 44 kTon scintillator detector. Main detection channel: Introduction Theoretical Framework Results Simplified Model Conclusions

z: redshift : energy of the neutrino at emission (neutrinosphere) R SN : core-collapse supernova rate per unit comoving volume : differential spectra emitted by the supernova Theoretical framework Diffuse Supernova Neutrino Background (DSNB) flux at Earth. Flat universe and ΛCDM model: Ω Λ =0.7Ω m =0.3H 0 =70 km s -1 Mpc -1 Introduction Theoretical Framework Results Simplified Model Conclusions Supernova Rate R SN. Many constraints ( Gamma-ray bursts, rest-frame UV, NIR H α, and FIR/sub-millimeters observations )

Star Formation Rate (R SF ) Star formation rate R SF from [1], where R SF is divided in three parts. [1] H. Yuksel, M. D. Kistler, J. F. Beacom, and A. M. Hopkins, Astrophys. J. 683, L5 (2008). with Introduction Theoretical Framework Results Simplified Model Conclusions

The propagation in supernovae e  e-e- Neutron Star MSW effect interaction Vacuum osc Introduction Theoretical Framework Results Simplified Model Conclusions

The propagation in supernovae e  e-e- Neutron Star MSW effect interaction Vacuum osc Hierarchy  13 Introduction Theoretical Framework Results Simplified Model Conclusions

The propagation in supernovae e  e-e- Neutron Star MSW effect interaction Vacuum osc SHOCK Hierarchy  13 Introduction Theoretical Framework Results Simplified Model Conclusions

Our simulation We use a 3 flavour code in which we solve the propagation of the amplitudes. We include the interaction (single angle approximation). J. Gava, C. Volpe, Phys.Rev.D78:083007(2008), Inverted hierarchy;  13 =9 ,  23 =40  Movies realized by S. Galais. Introduction Theoretical Framework Results Simplified Model Conclusions

Synchronized region Bipolar oscillations Spectral split region Inverted hierarchy;  13 =9 ,  23 =40  Our simulation J. Gava, C. Volpe, Phys.Rev.D78:083007(2008), Movies realized by S. Galais. Introduction Theoretical Framework Results Simplified Model Conclusions

Inverted hierarchy;  13 =9 ,  23 =40  Our simulation J. Gava, C. Volpe, Phys.Rev.D78:083007(2008), Movies realized by S. Galais. Introduction Theoretical Framework Results Simplified Model Conclusions

Inverted hierarchy;  13 =9 ,  23 =40  Synchronized region Bipolar oscillations Spectral split region Our simulation J. Gava, C. Volpe, Phys.Rev.D78:083007(2008), Movies realized by S. Galais. Introduction Theoretical Framework Results Simplified Model Conclusions

Shockwave effects in supernovae E =20 MeV Evolution of the density profile with time in the MSW region. 1. Before the shock (adiabatic propagation). Without. Impact on the probability. Introduction Theoretical Framework Results Simplified Model Conclusions

E =20 MeV 2. The shock arrives (non-adiabatic prop.). Without. Shockwave effects in supernovae Evolution of the density profile with time in the MSW region. 1. Before the shock (adiabatic propagation). Impact on the probability. Introduction Theoretical Framework Results Simplified Model Conclusions

E =20 MeV 3. Phase effects appear. Without. Shockwave effects in supernovae 2. The shock arrives (non-adiabatic prop.). Evolution of the density profile with time in the MSW region. 1. Before the shock (adiabatic propagation). Impact on the probability. Introduction Theoretical Framework Results Simplified Model Conclusions

Without. E =20 MeV 4. Post-shock propagation. Shockwave effects in supernovae 3. Phase effects appear. 2. The shock arrives (non-adiabatic prop.). Evolution of the density profile with time in the MSW region. 1. Before the shock (adiabatic propagation). Impact on the probability. Introduction Theoretical Framework Results Simplified Model Conclusions

A complete calculation including the shockwave has been realized. Now we’re aiming at:  seeing its impacts on the fluxes and events rates.  exploring the sensitivity to oscillations parameters:   13,  hierarchy.

Normal Hierarchy for.Inverted Hierarchy for. + shock (numerical). RESULTS: relic electron (anti-)neutrino fluxes For  13 we have two cases: L and S. + no shock (analytical).  13 Small. Results for  13 large are valid for the range: (MeV -1 cm -2 s -1 )  13 Small. + no shock. + shock. (MeV -1 cm -2 s -1 ) Chooz limitBest limit for future facilities exp window (argon detector) exp window (Čerenkov detector) Normal Hierarchy for.Inverted Hierarchy for. Introduction Theoretical Framework Results Simplified Model Conclusions

+ shock. + no shock. Here is plotted the ratio Shockwave impacts:  10-20% effect from numerical calculations. + no shock. + shock. NHIH Introduction Theoretical Framework Results Simplified Model Conclusions

+ shock. + no shock. Here is plotted the ratio Shockwave impacts:  10-20% effect from numerical calculations. + no shock. + shock. NHIH reduction of the sensitivity to  13. Introduction Theoretical Framework Results Simplified Model Conclusions

Water Čerenkov, scintillator detectors and Inverted Hierarchy (with ) Analytical (no shock)Numerical (shock) N events Detection windowLL MeV Argon detectors and Normal Hierarchy MeV DSNB event rates (per kTon per year) +18% -11%  10-20% variation only due to the presence of the shock. Introduction Theoretical Framework Results Simplified Model Conclusions

Water Čerenkov, scintillator detectors Inverted Hierarchy (with ) N events Detection window L (no shock) L (shock)S MeV Argon detectors and Normal Hierarchy MeV The sensitivity to  13 is reduced.  10-20% variation only due to the presence of the shock. -12% +14% DSNB event rates (per kTon per year) -26% -28% Introduction Theoretical Framework Results Simplified Model Conclusions

Loss of the sensitivity to collective effects in the L case. The sensitivity to  13 is reduced.  10-20% variation only due to the presence of the shock. Water Čerenkov, scintillator detectors Inverted Hierarchy (with shock) N events Detection window L (with )L (without ) MeV MeV % DSNB event rates (per kTon per year) Introduction Theoretical Framework Results Simplified Model Conclusions

What have we learnt?  one should include the shockwave in future simulations because its effects are significant. To do so, we propose a simplified model to account for these effects.

1. From the numerical evolution of, we extract the 3 times. t s : shock arrives t p : phase effects t ∞ : post-shock 2. We average the value of in each part because is  independent of the energy. A simplified model to account for the shockwave This model based upon the general behaviour of the shockwave in supernova to calculate the flux. Introduction Theoretical Framework Results Simplified Model Conclusions

1. From the numerical evolution of, we extract the 3 times. t s : shock arrives t p : phase effects t ∞ : post-shock 2. We average the value of in each part because is  independent of the energy. A simplified model to account for the shockwave This model based upon the general behaviour of the shockwave in supernova to calculate the flux. Introduction Theoretical Framework Results Simplified Model Conclusions

Survival probability evolution with times and energy. A simplified model to account for the shockwave Introduction Theoretical Framework Results Simplified Model Conclusions

Interval0→t s t s →t p t p →t  t→t→ With Without Times fitting with polynomials functions. The simulations using these functions reproduce the full calculation to less than 2%. Introduction Theoretical Framework Results Simplified Model Conclusions

Conclusions  First complete calculation with interaction and shockwave for relic supernova neutrinos.  The shock affects significantly the DSNB fluxes and event rates.  We propose a model that can be used in future calculations to include shockwave effects. S. Galais, J. Kneller, C. Volpe and J. Gava, Phys.Rev.D81:053002,2010 / arxiv: [hep-ph] Introduction Theoretical Framework Results Simplified Model Conclusions

Our predictions for future observatories after 10 years MEMPHYS, UNO 440 kTon 290 < N events < 392 LENA 50 kTon 84 < N events < 96 GLACIER 100 kTon 58 < N events < 66 IH NH S. Galais, J. Kneller, C. Volpe and J. Gava, Phys.Rev.D81:053002,2010 / arxiv: [hep-ph]

Simplified model VS Numerical calculation Here is plotted the ratio

Modification of the parameters Variation of the cooling time . Addition of a temporal offset  t to t i. Luminosity decreases like: Change the arrival time of the shock. Results are robust to variations of the cooling time and the arrival time. Introduction DSNB Motivations Theoretical Framework Results Simplified Model Conclusions

interaction as a pendulum S. Hannestad, G. G. Raffelt, G. Sigl, and Y. Y. Y. Wong, Phys. Rev. 74, (2006),

Inverted Hierarchy: with  without  N events Detection windowLS MeV0.078 (0.078)0.089 (0.066) MeV0.211 (0.210)0.224 (0.196) Normal Hierarchy Detection windowL or S MeV MeV0.196 Inverted Hierarchy: with  without  N events Detection windowL or S MeV0.059 (0.058) MeV0.099 (0.096) Normal Hierarchy Detection windowLS MeV MeV

A simplified model to account for the shockwave SHOCK NO SHOCK

A simplified model to account for the shockwave NO SHOCK N events (without ) > N events (with )

A simplified model to account for the shockwave SHOCK

A simplified model to account for the shockwave SHOCK N events (with ) increases N events (without ) decreases  N events (with )  N events (without )

Interval0→t s t s →t p t p →t  t→t→ With Without Timesa0a0 a1a1 a2a2 a3a3 a4a4 a5a5 tsts 1.02       tptp 9.83       tt   This model can be used in future calculations of DSNB fluxes and rates to include shockwave effects.

Survival probability evolution with times and energy. Introduction DSNB Motivations Theoretical Framework Results Simplified Model Conclusions A simplified model to account for the shockwave

Evolution of times with energy. Introduction DSNB Motivations Theoretical Framework Results Simplified Model Conclusions BUT the luminosity decreases So we must do : A simplified model to account for the shockwave AND

1.The interaction. - J. T. Pantaleone, Phys. Rev. D (1992). - S. Samuel, Phys. Rev. 48, 1462 (1993). - G. Sigl and G. G. Raffelt, Nucl. Phys. B (1993). - Y. Z. Qian and G. M. Fuller, Phys. Rev. D (1995). - S. Pastor, G. G. Raffelt, and D. V. Semikoz, Phys. Rev. 65, (2002), H. Duan, G. M. Fuller, J. Carlson, and Y.-Z. Qian, Phys. Rev. 74, (2006), S. Hannestad, G. G. Raffelt, G. Sigl, and Y. Y. Y. Wong, Phys. Rev. 74, (2006), A. B. Balantekin and Y. Pehlivan, J. Phys. 34, 47 (2007), G. G. Raffelt and A. Y. Smirnov, Phys. Rev. 76, (2007), … Recent developments in neutrino propagation in SN: After the explosion of the star, the neutrinos density is so high that neutrinos interact each other giving rise to collective effects like synchronization, bipolar oscillations and spectral split. Introduction

2. The shockwave effects. - R. C. Schirato and G. M. Fuller (2002), C. Lunardini and A. Y. Smirnov, JCAP 0306, 009 (2003), K. Takahashi, K. Sato, H. E. Dalhed, and J. R. Wilson, Astropart. Phys. 20, 189 (2003), G. L. Fogli, E. Lisi, A. Mirizzi, and D. Montanino, Phys. Rev. 68, (2003), R. Tomas, M. Kachelrieß, G. Raffelt, A. Dighe, H.-T. Janka, and L. Scheck, JCAP 0409, 015 (2004), G. L. Fogli, E. Lisi, A. Mirizzi, and D. Montanino, JCAP 4, 2 (2005), S. Choubey, N. P. Harries, and G. G. Ross, Phys. Rev. D74, (2006), B. Dasgupta and A. Dighe, Phys. Rev. 75, (2007), S. Choubey, N. P. Harries, and G. G. Ross, Phys. Rev. 76, (2007), J. P. Kneller, G. C. McLaughlin, and J. Brockman, Phys. Rev. 77, (2008), J. P. Kneller and G. C. McLaughlin, Phys. Rev. 73, (2006), … Introduction The shock propagates through the matter in which it will modify the density profile and therefore the MSW resonance. Introduction DSNB Motivations Theoretical Framework Results Conclusions

- … - I.K. Baldry and K. Glazebrook, Astrophys. J. 593, 258 (2003). - S. Ando and K. Sato, New Journal of Physics 6, 170 (2004), L. E. Strigari, J. F. Beacom, T. P. Walker and P. Zhang, JCAP 0504, 017 (2005), C. Lunardini, Astroparticle Physics 26, 190 (2006), H. Yüksel and J. F. Beacom, Phys. Rev. 76, (2007), S. Chakraborty, S. Choubey, B. Dasgupta, and K. Kar, JCAP 0809, 013 (2008), … 3. Progress on the Diffuse Supernova Neutrino Background (DSNB). Introduction There have been much progress on the ingredients of the DSNB such as star formation rate, initial mass function.

Normal HierarchyAnalytic (no shock)Numeric (shock) N events Detection windowLL MeV MeV Argon detectors. Inverted Hierarchy: with Analytic (no shock)Numeric (shock) N events Detection windowLL MeV MeV Water Cerenkov and scintillator detectors. per kTon per year DSNB event rates in -observatories +18% +8% - 9% -11%  10% variation only due to the presence of the shock.

Inverted Hierarchy: with + shock N events Detection windowLS MeV MeV Normal Hierarchy N events Detection windowLS MeV MeV Argon detectors. per kTon per year DSNB event rates in -observatories Water Cerenkov and scintillator detectors. +14% - 6% -12% Same variation due to  13.  10% variation only due to the presence of the shock.

Inverted Hierarchy: with + shock N events Detection window L (with  L (without  MeV MeV Normal Hierarchy N events Detection windowL MeV MeV0.106 Argon detectors. per kTon per year DSNB event rates in -observatories Water Cerenkov and scintillator detectors. Loss of the sensitivity to collective effects in the L case. Same variation due to  %  10% variation only due to the presence of the shock.

The method used We use a 3 flavour code in which we solve the propagation of the amplitudes. We include the interaction (single angle approximation). J. Gava, C. Volpe, Phys.Rev.D78:083007(2008), Spectral split. This gives our at the supernova. interaction Inverted Hierarchy. 1. Synchronized region. 2. Bipolar oscillations. MSW effect DSNB Motivations Theoretical Framework Results Conclusions