Triangle Centres
Mental Health Break
Given the following triangle, find the: centroid orthocenter circumcenter
Equation of AD (median) Strategy…. 1.Find midpoint D 2.Find eq’n of AD by -Find slope “m” of AD using A & D -Plug “m” & point A or D into y=mx+b & solve for “b” -Now write eq’n using “m” & “b” Remember – the centroid is useful as the centre of the mass of a triangle – you can balance a triangle on a centroid!
Equation of AD (median)
Equation of BE (median) Strategy…. 1.Find midpoint E 2.Find eq’n of BE by -Find slope “m” of BE using B & E -Plug “m” & point B or E into y=mx+b & solve for “b” -Now write eq’n using “m” & “b”
Equation of BE (median)
Question? Do we have to find the equation of median CF also?
No We only need the equations of 2 medians… So, what do we do now?
We need to find the Point of Intersection for medians AD & BE using either substitution or elimination
Equation of median AD Equation of median BE
Equation of AD (median) Strategy…. 1.Find midpoint D 2.Find eq’n of AD by -Find slope “m” of AD using A & D -Plug “m” & point A or D into y=mx+b & solve for “b” -Now write eq’n using “m” & “b”
Centroid Eq’n AD – Midpoint of BC
Centroid Eq’n AD – Slope of AD
Centroid Eq’n AD – Finding “b”
Centroid Eq’n AD – Equation
Centroid Eq’n BE – Midpoint of AC
Centroid Eq’n BE – Slope of BE
Centroid Eq’n BE – Finding “b”
Centroid Eq’n BE – Equation
Centroid – Intersection of Eq’n AD & BE
BE AD Add AD and BE Simplify and solve for y
Centroid – Intersection of Eq’n AD & BE Substitute y = 1 into one of the equations Therefore, the point of intersection is (1,1)
Equation of altitude AD Strategy…. 1.Find “m” of BC 2.Take –ve reciprocal of “m” of BC to get “m” of AD 3.Find eq’n of AD by -Plug “m” from 2. & point A into y=mx+b & solve for “b” -Now write eq’n using “m” & “b”
Centroid – Intersection of Eq’n AD & BE Therefore, the Centroid is (1,1)
Equation of altitude AD
Equation of altitude BE Strategy…. 1.Find “m” of AC 2.Take –ve reciprocal of “m” of AC to get “m” of BE 3.Find eq’n of BE by -Plug “m” from 2. & point B into y=mx+b & solve for “b” -Now write eq’n using “m” & “b”
Equation of altitude BE
Question? Do we have to find the equation of altitude CF also?
No We only need the equations of 2 altitudes… So, what do we do now?
We need to find the Point of Intersection for altitudes AD & BE using either substitution or elimination
Equation of altitude AD Equation of altitude BE
Orthocentre Eq’n AD – Slope of BC then Slope of AD
Orthocentre Eq’n AD – Finding “b”
Orthocentre Eq’n AD – Equation
Orthocentre Eq’n BE – Slope of AC then Slope of BE
Orthocentre Eq’n BE – Finding “b”
Orthocentre Eq’n BE – Equation
Orthocentre – Intersection of Eq’n AD & BE
BE AD Add AD and BE Simplify and solve for y
Orthocentre – Intersection of Eq’n AD & BE Substitute y = 1 into one of the equations Therefore, the point of intersection or Orthocentre
Equation of ED (perpendicular bisector) Strategy… (use A (-1, 4), B (-1, -2) & C(5, 1)) 1.Find midpoint D 2.Find eq’n of ED by -Find slope “m” of BC using B & E -Take –ve reciprocal to get “m” of ED -Plug “m” ED & point D into y = mx+b & solve for b -Now write eq’n using “m” & “b”
Equation of ED (perpendicular bisector)
Equation of FG (perpendicular bisector) Strategy… (use A (-1, 4), B (-1, -2) & C(5, 1)) 1.Find midpoint F 2.Find eq’n of ED by -Find slope “m” of AC using A & C -Take –ve reciprocal to get “m” of FG -Plug “m” FG & point F into y = mx+b & solve for b -Now write eq’n using “m” & “b”
Question? Do we have to find the equation of perpendicular bisector HI?
No We only need the equations of 2 perpendicular bisectors… So, what do we do now?
We need to find the Point of Intersection for perpendicular bisectors ED & FG using either substitution or elimination
Equation of perpendicular bisector ED Equation of perpendicular bisector FG
Equation of FG (perpendicular bisector)
Circumcentre eq’n ED – Midpoint of BC
Circumcentre Eq’n ED – Slope of BC & Slope of ED
Circumcentre Eq’n ED – Finding “b”
Circumcentre Eq’n ED – Equation
Circumcentre Eq’n FG – Midpoint of AC
Circumcentre Eq’n FG – Slope of AC & Slope of FG
Circumcentre Eq’n FG – Finding “b”
Circumcentre Eq’n FG – Equation
Circumcentre – Intersection of Eq’n ED & FG
FG ED Add ED and FG Simplify and solve for y
Orthocentre – Intersection of Eq’n AD & BE Substitute y = 1 into one of the equations Therefore, the point of intersection or Circumcentre