1 EOS definition & motivation Phase diagram: theories of solid, liquid, plasmas experiments: static & dynamic Wide-range multi-phase EOS for metals semi-empirics.

Slides:



Advertisements
Similar presentations
Derivation of thermodynamic equations
Advertisements

Molecular dynamics modeling of thermal and mechanical properties Alejandro Strachan School of Materials Engineering Purdue University
The Periodic Table and the Elements
Chemistry, Matter and Energy
A Macroscopic Description of Matter (Phase Changes & Ideal Gases)
Wide Range Equation of State of Water Smirnova M.S., Dremov V.V., Sapozhnikov A.T. Russian Federation Nuclear Centre – Institute of Technical Physics P.O.
The mathematics of classical mechanics Newton’s Laws of motion: 1) inertia 2) F = ma 3) action:reaction The motion of particle is represented as a differential.
Equations of state (EOS). An EOS is a relation between P, V and T. The EOS known to everybody is the ideal gas equation: PV=nRT Important thermodynamic.
3.3 The Periodic Table and the Elements
First Law of Thermodynamics Physics 102 Professor Lee Carkner Lecture 5 (Session: )
LEFT CLICK OR PRESS SPACE BAR TO ADVANCE, PRESS P BUTTON TO GO BACK, PRESS ESC BUTTON TO END LEFT CLICK OR PRESS SPACE BAR TO ADVANCE, PRESS P BUTTON.
Kinetic coefficients of metals ablated under the action of femtosecond laser pulses. Yu.V. Petrov*, N.A. Inogamov*, K.P. Migdal** * Landau Institute for.
СИСТЕМА ДЛЯ РАСЧЕТОВ УДАРНО- ВОЛНОВЫХ ПРОЦЕССОВ ЧЕРЕЗ ИНТЕРНЕТ Институт теплофизики экстремальных состояний РАН, Москва, Россия Хищенко.
Chapter 10 Physics of Highly Compressed Matter. 9.1 Equation of State of Matter in High Pressure.
Thermodynamics.
Investigation of fluid- fluid phase transition of hydrogen under high pressure and high temperature 2014/11/26 Shimizu laboratory SHO Kawaguchi.
Thermodynamics Basic Review of Byeong-Joo Lee Microstructure Evolution
Brookhaven Science Associates U.S. Department of Energy MUTAC Review April , 2004, LBNL Target Simulation Roman Samulyak, in collaboration with.
M. Povarnitsyn*, K. Khishchenko, P. Levashov
Dynamics of phase transitions in ion traps A. Retzker, A. Del Campo, M. Plenio, G. Morigi and G. De Chiara Quantum Engineering of States and Devices: Theory.
Periodic Table Of Elements
1 Phase transitions in femtosecond laser ablation M. Povarnitsyn, K. Khishchenko, P. Levashov Joint Institute for High Temperatures RAS, Moscow, Russia.
Simulation of femtosecond laser ablation of gold into water Povarnitsyn M.E. 1, Itina T.E. 2, Levashov P.R. 1, Khishchenko K.V. 1 1 JIHT RAS, Moscow, Russia.
Clustered fluid a novel state of charged quantum fluid mixtures H. Nykänen, T. Taipaleenmäki and M. Saarela, University of Oulu, Finland F. V. Kusmartsev.
Thermal contact Two systems are in thermal (diathermic) contact, if they can exchange energy without performing macroscopic work. This form of energy.
Pressure measurements at high temperature: open issues and solutions Peter I. Dorogokupets Institute of the Earth’s Crust SB RAS, Irkutsk, Russia
Russian Research Center” Kurchatov Institute” Theoretical Modeling of Track Formation in Materials under Heavy Ion Irradiation Alexander Ryazanov “Basic.
Reduced-adiabat Isotherms of Metals and Hard Materials at 100 GPa Pressures and Finite Temperatures W. J. Nellis Department of Physics Harvard University.
Thermodynamic functions of non- ideal two-dimensional systems with isotropic pair interaction potentials Xeniya G. Koss 1,2 Olga S. Vaulina 1 1 JIHT RAS,
:37 PM1 3.3 Periodic Table ENTRY QUIZ :37 PM2 3.3 Periodic Table FOURTH ELEMENT BERYLLIUM Be Atomic number 4 Atomic weight Synthesized.
Introduction to Mineralogy Dr. Tark Hamilton Chapter 3: Lecture 7 The Chemical Basis of Minerals (sizes, shapes & directions) Camosun College GEOS 250.
Transition from periodic lattice to solid plasma in ultrashort pulse irradiation of metals Dimitri Fisher Soreq NRC Israel 25 th Hirschegg PHEDM Workshop.
Thermodynamic data A tutorial course Session 2: unary data (part 2) Alan Dinsdale “Thermochemistry of Materials” SRC.
Periodic Table Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca 20 Sc 21 Ti 22 V 23 Cr.
Thermal Properties of Materials
1910 Nobel Prize van der Waals On the continuity of the gaseous and liquid state (1872) … if a gas in the extremely dilute state, where the volume is.
The Periodic Table and the Elements. What is the periodic table ? What information is obtained from the table ? How can elemental properties be predicted.
1 ON THE MODELING OF DOUBLE PULSE LASER ABLATION OF METALS M. Povarnitsyn, K. Khishchenko, P. Levashov Joint Institute for High Temperatures, RAS, Moscow,
Composition of the Earth’s core from ab-initio calculation of chemical potentials Department of Earth Sciences & Department of Physics and Astronomy, Thomas.
Chapter 7 in the textbook Introduction and Survey Current density:
1 4.1 Introduction to CASTEP (1)  CASTEP is a state-of-the-art quantum mechanics-based program designed specifically for solid-state materials science.
공정 열역학 Chapter 3. Volumetric Properties of Pure Fluids
Wide-range Multiphase Equations of State and Radiative Opacity of Substances at High Energy Densities Konstantin V. Khishchenko, Nikolay Yu. Orlov Joint.
Topic: Families of Elements PSSA: A/S8.C.1.1.
Periodic Table Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca 20 Sc 21 Ti 22 V 23 Cr.
S2 SCIENCE CHEMICAL REACTIONS
Metal or non-metal? iron (Fe) iodine (I) antimony (Sb) copper (Cu)
KS4 Chemistry Metallic Bonding.
THE TRANSITION METALS.
Chemistry Metals and non metals.
3.3 The Periodic Table and the Elements
KS4 Chemistry Metallic Bonding.
Emission of Energy by Atoms and Electron Configurations
THE TRANSITION METALS.
Trends of the Periodic Table
Periodic Table Kelter, Carr, Scott, Chemistry A Wolrd of Choices 1999, page 74.
3.3 The Periodic Table and the Elements
The Periodic Table and the Elements
3.3 The Periodic Table and the Elements
The Periodic Table and the Elements
FERMI-DIRAC DISTRIBUTION.
The Periodic Table and the Elements
:37 PM1 3.3 Periodic Table 3.3 The Periodic Table and the Elements Dr. Fred Omega Garces Chemistry 100 Miramar College.
The Periodic Table Part I – Categories of Elements
Ionic vs. Covalent Bonding
The Periodic Table Part I – Categories of Elements
Chapter 3: Evaluating Properties
Increase in Ease of Oxidation
Presentation transcript:

1 EOS definition & motivation Phase diagram: theories of solid, liquid, plasmas experiments: static & dynamic Wide-range multi-phase EOS for metals semi-empirics origin – quasiharmonic model EOS model, construction of EOS for U EOS accuracy High pressure, high temperature melting & evaporating Regularities: IEX vs. shockwave data & Birch law EOS applications expert calculations melting & evaporating in shock-wave processes isochoric heating – high-entropy states shock wave stability Theoretical Equations of State for Metals at High Energy Densities Igor Lomonosov (Prof., EOS lab. leader, IPCP RAS, Chernogolovka, RUSSIA)

2 EOS - EOS - fundamental property of matter, defining its thermodynamic, mechanic,… as functional form f(x,y,z)=0 (V,T,P,…) or tables or graphs. T=const, Birch «soft» spheres Mie-Grueneisen Shock - wave data compendium: Copper, Cu R= g/cc 2 L. V. Al'tshuler, K. K. Krupnikov, M. I. Brazhnik, Dynamical compressibility of metals under pressure from to 4 million atmospheres, Zh. Eksp. Teor. Fiz. 34, (1958) [in Russian] (Sov. Phys. - JETP 7, (1958)). m U D P V0/V R L. V. Al'tshuler, S. B. Kormer, A. A. Bakanova, R. F. Trunin, Equations of state for aluminum, copper and lead in the high pressure region, Zh. Eksp. Teor. Fiz. 38, (1960) [in Russian] (Sov. Phys. - JETP 11, (1960)). m U D P V0/V R

3 Motivation  Fundamental properties  R&D at high pressure  Geophysics, planets  Numerical modeling: ICF, hypervelocity impacts, …

4 P(V,T) - Uranium Theory: solid (T=0 K) band structure liquid plasmas Experiment: DAC, T-DAC P(V,T=const) LM -  (T,P=1 bar) IEX - H, E, Cs, T, V (P=const) H 1 - P,V, E, T s=const - P, U, T H 1, H p - P,V, E (Cs) s=const - P,U EOS information: summary

5 Experiment: static Angle dispersion and structure of Cs-V according to K.Syassen, Proceed. Enrico Fermi School Birch EOS Murnaghan EOS Birch EOS Maximum pressure  3 Mbar

6 Pressure < 4 kbar, temperature <8000 K Experiment: I(sobaric)EX(pansion) Typical IEX setup according to M.Boivineau, J.Nucl.Mat. 297, 97 (2001)

7 Experiment: shock waves D P 0, E 0, V 0 U, P, E, V Hugoniot relations: shock compression Lasers HE gun Z-pinch Railgun

8 Experiment: shock waves

9 U S, P S, E S, V S U, P H, E H, V H adiabatic expansion Riemann invariants:

10 Theory: solid state Band structure at T=0 K Li structures according to M. Hanfland, K. Syassen, N. E. Christensen, D. L. Novikov, Nature 408, 174 (2000)

11 Theory: liquid & plasmas Liquid:  (r), g(r)  (r) g(r) integral eqs. “Chemical”model of plasmas Calculated shock adiabat of porous Ni by Fortov et al. JETP, 87, 678 (1998)

12 EOS information: summary Physical propertiesLimitations Theory: solid (T=0 K, final T), liquid, plasmas structure, thermodynamics different approaches local applicability Experiment: DAC, T-DAC LM IEX H 1 – H p (Hugoniot) s =const structure, P(V,T=const)  (T,P=1 bar) H, E, Cs, T, V (P=const) P,V, E, Cs, T P, U, T thermal-strength, P<3 Mbar --- * ---, T<3500 K --- * ---, P<4 kbar, T<8000 K final density (physics)

13 Insufficient theoretical basis: best integral equation in plasma&liquid (hypernetted, BGY, PY,…)? critical point’s evaluations pair (triple) potential in plasma&liquid? quantum many-bodies problem Lack of experimental data: H 1 for most metals E(P,V)  (T) at 1 bar s=const - P(U) - E(P,V) IEX - H,E,Cs,T(P=const) EOS problems

14 Semiempirical EOS Quasi-harmonical model: 3N harmonic oscillators - (V), thermal energy and pressure

15 Thermal electronsMelting (Grover)Anharmonic atoms Mie-Gruneisen EOS Gruneisen gammaT=0K potentials Birch Morse Born-Mayer EOS

16 LiquidSolid  с =25  500 x=ln  Multi-phase EOS

17 Thermal electrons Asymptotes:

18 MULTI-PHASE EOS Free energy potential Thomas-Fermi Debay model anharmonicity melting liquid phase Cv - MC ionization metal-insulator Solid, liquid, gas, plasma phase boundaries - melting, evaporation

19 U AT T=0&293K

20 U P-T AT HIGH PRESSURE

21 U AT HIGH PRESSURE

22 U EVAPORATION

23 U EVAPORATION

24 U AT LOWER DENSITIES

25 Isochoric plasma closed vessel: P. Renaudin, C. Blancard, J. Cle´rouin, G. Faussurier, P. Noiret, and V. Recoules, “Aluminum Equation-of-State Data in the Warm Dense Matter Regime”, Phys. Rev. Lett., 91 (2003) electric discharge Al 0.3 g/cc Al 0.1 g/cc plasma EOS accuracy DAC, shock-wave data < 3% IEX < 6-8% Novel data?

26 Na MELTING

27 Mg AT HIGH PRESSURE

28 Bi AT HIGH PRESSURE

29 Mo AT HIGH PRESSURE

30 Pb EVAPORATION

31 W EVAPORATION

32 W AT LOWER DENSITY

33 GENERAL REGULARITIES Melting P – T-diagrams to 10 GPa  (T, P): Na T-DAC: U, Fe Cs in shocked: Ta, Mo, Fe shocked liquid: Zn, Cd, Sn, Bi T shock: Fe porous Hugoniots: Mg, Cr, Co, Fe, Ni, Mo, Ta, W, Zn, U Evaporation T evaporation (p=1 bar) = experiment  (T, P=1 bar): Na, Fe, Co, Ni, Zn, Ag, Cd, Sn, U IEX: Be, V, Nb, Fe, Ta, W, Ni, Re, Pt, U T for S=const: Ni, Pb (Sn) S=const: Mg, Mo, W, Zn, Cd, Sn, Bi, U S=const – entrance into liquid-gas region: Mo, U CP: soft spheres – EOS - Fortov

34 MELTING & EVAPORATION Hugoniot melting pressure Critical points of metals

35 Liquid metals: general reqularities IEX SW data

36 Liquid metals: general reqularities

37 Expert calcualtions: Fe strikes Zn

38 Expert calcualtions: resistivity of Li

39 Shock wave – Shock wave – unique tool in physics of high pressures, producing homogeneous distribution of P, E, V, T in short time P 0, V 0, E 0 P, V, E, U D V 0 /V=D/(D-U) P=P 0 + DU/V 0 E=E 0 + 1/2(P 0 + P)(V 0 – V) shock compression Hugoniot relations: Shock-wave stability

40 Absolute instability: Sound («D’yakov») instability: Criteria of shock wave stability linearized gas dynamic equations: D’yakov 1954, Kontorovich 1957 general theory of decay and branching of arbitrary discontinuity: Kuznetsov 1985

41 Shock wave in media with 0>(d 2 P/dV 2 ) S (d 2 P/dV 2 ) S <0 o ab c H o a o a b o a b c H HS h P V

42 Methodology Multi-phase EOS for 30 metals Shock adiabats start at different P 0, V 0 Analysis of stability with criteria

43 Shock wave stability in Mg at P 0 =1 bar

44 Shock wave stability in Mg at different P 0

45 Instabilities in Mg at different P 0 & V 0

46  EOS for 30 metals  Agreement with experiment & theory  Phase boundaries of melting & evaporation  EOS applications for high-energy-density physics  Successful implementation in 2D,3D codes Conclusions

47 Thank You. Questions?