Quiz – Write question and answer

Slides:



Advertisements
Similar presentations
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Seventh Edition Elaine N. Marieb Chapter.
Advertisements

IB Biology HL II Clegg: Musculosketal System IB Biology HL II Clegg:
Objective 3 Describe and diagram the microscopic structure of skeletal muscle fibers.
ELAINE N. MARIEB EIGHTH EDITION 6 Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings PowerPoint ® Lecture Slide Presentation by.
The Muscular System.
The Muscular System Produce movement or tension via shortening (contraction) Generate heat - body temp 3 types: Skeletal - moves bone, voluntary Smooth.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Seventh Edition Elaine N. Marieb Chapter.
Muscular System Mahoney LHS 1/20/07.
Chapter 6 The Muscular System
12/4 have your wp #1 out to be checked in. Lecture on General muscles to microscopic muscle Building a muscle HW: Quiz on muscle names & wp #2. Finish.
Challenge Problem 1.Where can smooth muscle be found? 2.Can we control smooth muscle with our brain? 3.Where can we find cardiac muscle? 4.If you had to.
The Sliding Filament Theory Slide 6.18 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 6.8.
ELAINE N. MARIEB EIGHTH EDITION 6 Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings PowerPoint ® Lecture Slide Presentation by.
EDU2HBS Human Body Systems 1 The Muscular System 2.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Slides 6.1 – 6.17 Seventh Edition Elaine.
Essentials of Human Anatomy & Physiology HCT II Muscular System.
Muscle Physiology.
ELAINE N. MARIEB EIGHTH EDITION 6 Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings PowerPoint ® Lecture Slide Presentation by.
© 2012 Pearson Education, Inc. Muscle Response to Strong Stimuli Muscle force depends upon the number of fibers stimulated More fibers contracting results.
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Objective 6 Describe muscle interactions to produce normal muscular movement.
Essentials of Anatomy and Physiology Fifth edition Seeley, Stephens and Tate Slide 2.1 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin.
G. Homeostasis – Muscle contraction is an important homeostatic device 1. Oxygen debt – During exercise blood vessels dilate and blood flow increases a.
PowerPoint ® Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College Copyright © 2009 Pearson Education, Inc., publishing.
Muscle Types There are 3 types of muscles Skeletal muscle – skeletal movement Cardiac muscle – heart movement Smooth muscle – peristalsis (pushes substances.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Slides 6.18 – 6.31 Seventh Edition Elaine.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Slides 6.1 – 6.17 Seventh Edition Elaine.
Pages  Muscle fiber contraction is “all or none” ◦ There is no “in-between” contraction  Not all fibers may be stimulated at one time  Different.
Chapter 6 The Muscular System
EXERCISE AND ENERGY Contracting and Relaxing Skeletal Muscle.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 36-2 The Muscular System.
Anatomy & Physiology. Muscles are responsible for causing movement in the body. Three types: Skeletal Cardiac Smooth What are their differentiating characteristics?
Chapter 6 The Muscle Physiology
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Slides 6.1 – 6.17 Seventh Edition Elaine.
© 2012 Pearson Education, Inc. PowerPoint ® Lecture Slides Prepared by Patty Bostwick-Taylor, Florence-Darlington Technical College C H A P T E R 6 The.
The Muscular System Structure and Function (Part 2)
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Seventh Edition Elaine N. Marieb Chapter.
© 2012 Pearson Education, Inc. PowerPoint ® Lecture Slides Prepared by Patty Bostwick-Taylor, Florence-Darlington Technical College C H A P T E R 6 The.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Seventh Edition Elaine N. Marieb Chapter.
THE MUSCULAR SYSTEM. FUNCTIONS OF MUSCLE PRODUCING MOVEMENT – BOTH INTERNAL AND WHOLE – BODY MAINTAINING POSTURE STABILIZING JOINTS GENERATING HEAT.
Chapter 6 The Muscular System. The Sliding Filament Theory.
Section Sarcolemma- plasma membrane of a muscle fiber 2. Sarcoplasm- cytoplasm 3. Sarcoplasmic reticulum- smooth ER that stores Ca Myofibrils-
Muscle Structure Review & Physiology Adopted from Marieb’s A & P.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Slides 6.1 – 6.17 Seventh Edition Elaine.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Chapter The System.
ELAINE N. MARIEB EIGHTH EDITION 6 Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings PowerPoint ® Lecture Slide Presentation by.
Microanatomy of Muscles Ch. 6b. Microscopic Anatomy of Skeletal Muscle Slide 6.9a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings.
Bell Ringer What is the role of acetylcholine in the process of muscle contraction? Acetylcholine is a neurotransmiter involved in the process of muscle.
The Muscular System.
Chapter 6 The Muscular System
Muscle Response to Strong Stimuli
Contraction of a Skeletal Muscle
Chapter 6 The Muscular System
Chapter 6 The Muscular System
The Muscular System.
Chapter 8 muscular system
The Muscular System.
Chapter 6 The Muscular System
The Muscular System.
Chapter 6 The Muscular System
Chapter 6 The Muscular System
The Muscular System.
The Muscular System.
Energy And Exercise and Muscles
The Muscular System.
The Muscular System.
The Muscular System.
The Muscular System.
The Muscular System Muscles are responsible for all types of body movement – they contract or shorten and are the machine of the body Three basic muscle.
Chapter 6 The Muscular System
The Muscular System.
Presentation transcript:

Quiz – Write question and answer Name the 3 types of muscle tissue Which type of muscle is voluntary? Name 2 of the 4 functions of muscles Name the two important filaments found in muscle cells. (Hint: Thick and thin) T/F A nerve impulse is required to contract a muscle cell

Color of slides Green font White Background Yellow Background You better know White Background Good to know Yellow Background Skim over

Chapter 6 The Muscular System Essentials of Human Anatomy & Physiology Seventh Edition Elaine N. Marieb Chapter 6 The Muscular System Slides 6.18 – 6.31 Lecture Slides in PowerPoint by Jerry L. Cook Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

The Sliding Filament Theory of Muscle Contraction Activation by nerve causes myosin heads (crossbridges) to attach to binding sites on the thin filament Myosin heads then bind to the next site of the thin filament Figure 6.7 Slide 6.17a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

The Sliding Filament Theory of Muscle Contraction This continued action causes a sliding of the myosin along the actin The result is that the muscle is shortened (contracted) Figure 6.7 Slide 6.17b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

The Sliding Filament Theory Figure 6.8 Slide 6.18 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Sliding Filament Theory Video Clip

Contraction of a Skeletal Muscle Muscle fiber contraction is “all or none” Within a skeletal muscle, not all fibers may be stimulated during the same interval Different combinations of muscle fiber contractions may give differing responses Graded responses – different degrees of skeletal muscle shortening Slide 6.19 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Types of Graded Responses Twitch Single, brief contraction Not a normal muscle function Figure 6.9a, b Slide 6.20a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Types of Graded Responses Tetanus (summing of contractions) One contraction is immediately followed by another The muscle does not completely return to a resting state The effects are added Figure 6.9a, b Slide 6.20b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Types of Graded Responses Unfused (incomplete) tetanus Some relaxation occurs between contractions The results are summed Figure 6.9a, b Figure 6.9c,d Slide 6.21a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Types of Graded Responses Fused (complete) tetanus No evidence of relaxation before the following contractions The result is a sustained muscle contraction Figure 6.9a, b Figure 6.9c,d Slide 6.21b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Muscle Response to Strong Stimuli Muscle force depends upon the number of fibers stimulated More fibers contracting results in greater muscle tension Muscles can continue to contract unless they run out of energy Slide 6.22 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Energy for Muscle Contraction Initially, muscles used stored ATP for energy Bonds of ATP are broken to release energy Only 4-6 seconds worth of ATP is stored by muscles After this initial time, other pathways must be utilized to produce ATP Slide 6.23 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Energy for Muscle Contraction Direct phosphorylation Muscle cells contain creatine phosphate (CP) CP is a high-energy molecule After ATP is depleted, ADP is left CP transfers energy to ADP, to regenerate ATP CP supplies are exhausted in about 20 seconds Slide 6.24 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 6.10a

Energy for Muscle Contraction Aerobic Respiration Series of metabolic pathways that occur in the mitochondria Glucose is broken down to carbon dioxide and water, releasing energy This is a slower reaction that requires continuous oxygen Figure 6.10c Slide 6.25 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Energy for Muscle Contraction Anaerobic glycolysis Reaction that breaks down glucose without oxygen Glucose is broken down to pyruvic acid to produce some ATP Pyruvic acid is converted to lactic acid Slide 6.26a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 6.10b

Energy for Muscle Contraction Anaerobic glycolysis (continued) This reaction is not as efficient, but is fast Huge amounts of glucose are needed Lactic acid produces muscle fatigue Slide 6.26b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 6.10b

Muscle Fatigue and Oxygen Debt When a muscle is fatigued, it is unable to contract The common reason for muscle fatigue is oxygen debt Oxygen must be “repaid” to tissue to remove oxygen debt Oxygen is required to get rid of accumulated lactic acid Increasing acidity (from lactic acid) and lack of ATP causes the muscle to contract less Slide 6.27 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Types of Muscle Contractions Isotonic contractions Myofilaments are able to slide past each other during contractions The muscle shortens Isometric contractions Tension in the muscles increases The muscle is unable to shorten Slide 6.28 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Muscle Tone Some fibers are contracted even in a relaxed muscle Different fibers contract at different times to provide muscle tone The process of stimulating various fibers is under involuntary control Slide 6.29 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Muscles and Body Movements Movement is attained due to a muscle moving an attached bone Figure 6.12 Slide 6.30a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Muscles and Body Movements Muscles are attached to at least two points Origin – attachment to a moveable bone Insertion – attachment to an immovable bone Figure 6.12 Slide 6.30b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Effects of Exercise on Muscle Results of increased muscle use Increase in muscle size Increase in muscle strength Increase in muscle efficiency Muscle becomes more fatigue resistant Slide 6.31 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings