Chapter 6 Work and Energy. Units of Chapter 6 Work Done by a Constant Force Work Done by a Varying Force Kinetic Energy, and the Work-Energy Principle.

Slides:



Advertisements
Similar presentations
Physics: Principles with Applications, 6th edition
Advertisements

Work Work – when a force causes an object to move in the direction of that force. Work & Energy are scalar quantities. Joule (J) – SI unit for Work &
Conservation of Energy
今日課程內容 CH7: 功與能 外力做功 動能 功能定理 CH8: 能量守恆 保守力 位能 機械能與機械能守恆 能量守恆定律.
Work, Energy, And Power m Honors Physics Lecture Notes.
Kinetic Energy Lecturer: Professor Stephen T. Thornton
Work and Energy.
Chapter 6: Work & Energy. THE COURSE THEME is NEWTON’S LAWS OF MOTION! Chs. 4, 5: Motion analysis with forces. NOW (Ch. 6): An alternative analysis using.
Physics 218, Lecture XI1 Physics 218 Lecture 11 Dr. David Toback.
Conservation of Energy
Chapter 7 Work and Energy
Chapter 6 Work & Energy.
Chapter 6 Work and Energy
Chapter 8 Conservation of Energy 8.2 Gravitational Potential Energy 8-3 Mechanical Energy and Its Conservation 8-4 Problem Solving Using Conservation of.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
WORK In order for work to be done, three things are necessary:
Chapter 7 Work and Energy
Work. Work is the product of the magnitude of the __________________ moved times the component of a ________________ in the direction of the ________________.
Chapter 6 Work and Energy.
Ch 6 Work and Energy.
Chapter 5 Work and Energy. 6-1 Work Done by a Constant Force The work done by a constant force is defined as the distance moved multiplied by the component.
Energy m m Physics 2053 Lecture Notes Energy.
Chapter 6 Work and Energy Objectives: The student will be able to: 1.Define and calculate gravitational potential energy. 2.State the work energy theorem.
Chapter 7 Energy of a System. Introduction to Energy A variety of problems can be solved with Newton’s Laws and associated principles. Some problems that.
1 Physics for Scientists & Engineers, with Modern Physics, 4 th edition Giancoli Piri Reis University / Physics -I.
Conservative Forces: The forces is conservative if the work done by it on a particle that moves between two points depends only on these points and not.
Chapter 6 Work and Energy. Units of Chapter 6 Work Done by a Constant Force Kinetic Energy, and the Work-Energy Principle Potential Energy Conservative.
Work and Energy.
© 2010 Pearson Education, Inc. Lecture Outline Chapter 5 College Physics, 7 th Edition Wilson / Buffa / Lou.
Work and Energy Work The work done by a constant force is defined as the product of the component of the force in the direction of the displacement and.
Work and Energy. Work Done by a Constant Force The work done by a constant force is defined as the distance moved multiplied by the component of the force.
Energy. Analyzing the motion of an object can often get to be very complicated and tedious – requiring detailed knowledge of the path, frictional forces,
NAZARIN B. NORDIN What you will learn: Define work, power and energy Potential energy Kinetic energy Work-energy principle Conservation.
Work and Energy.
Copyright © 2009 Pearson Education, Inc. © 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for.
Chapter 7 Work and Energy HW5 due on Monday 12 instead of Friday 9. Study Guide will be posted on Friday 9.
Chapter 5: Work and Energy. Today’s Objectives What do you think? List five examples of things you have done in the last year that you would consider.
Chapter 8: Conservation of Energy. In Ch. 7, we learned The Work-Energy Principle: W net = (½)m(v 2 ) 2 - (½)m(v 1 ) 2   K W net ≡ The TOTAL work done.
Ch. 6, Work & Energy, Continued. Summary So Far Work-Energy Theorem: W net = (½)m(v 2 ) 2 - (½)m(v 1 ) 2   KE Total work done by ALL forces! Kinetic.
Work and Energy. Work O Work is defined as the force parallel to the direction of motion times the distance. W = F (parallel)  d = F d cos θ O If the.
Work Readings: Chapter 11.
Conservation of Energy
Work, Energy & Power AP Physics B. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Work Done by a Constant Force The work done by a constant force is defined as the distance moved multiplied by the component of the force in the direction.
Energy Notes Energy is one of the most important concepts in science. An object has energy if it can produce a change in itself or in its surroundings.
Chapter 8 Conservation of Energy 8.2 Potential Energy 8.3 Mechanical Energy and Its Conservationial Energy 8.4 Problem Solving Using Conservation of Mechanical.
Chapter 6 Work and Energy © 2014 Pearson Education, Inc. No need to write information in red.
Kinetic energy exists whenever an object which has mass is in motion with some velocity. Everything you see moving about has kinetic energy. The kinetic.
Work and Energy. Work Done by a Constant Force The work done by a constant force is defined as the distance moved multiplied by the component of the force.
Three things necessary to do Work in Physics:
Chapter 6 Work and Energy.
Topic VII Work and Energy
Chapter 6 Work and Energy
Chapter 6 Work and Energy.
Chapter 6 Work and Energy
Chapter 6 Work and Energy.
Chapter 6 Work and Energy
Physics: Principles with Applications, 6th edition
Chapter 13 Work and Energy.
Physics for Scientists and Engineers, with Modern Physics, 4th Edition
Chapter 7 Work and Energy
Physics: Principles with Applications, 6th edition
Chapter 7 Work and Energy
Chapter 7 Work and Energy
Physics: Principles with Applications, 6th edition
Lecture 4 Work & Energy.
Chapter 6 Work and Energy
Physics: Principles with Applications, 6th edition
Presentation transcript:

Chapter 6 Work and Energy

Units of Chapter 6 Work Done by a Constant Force Work Done by a Varying Force Kinetic Energy, and the Work-Energy Principle Potential Energy Conservative and Nonconservative Forces Mechanical Energy and Its Conservation Problem Solving Using Conservation of Mechanical Energy

Units of Chapter 6 Other Forms of Energy; Energy Transformations and the Law of Conservation of Energy Energy Conservation with Dissipative Forces: Solving Problems Power

6-1 Work Done by a Constant Force The work done by a constant force is defined as the distance moved multiplied by the component of the force in the direction of displacement: (6-1)

6-1 Work Done by a Constant Force In the SI system, the units of work are joules: As long as this person does not lift or lower the bag of groceries, he is doing no work on it. The force he exerts has no component in the direction of motion.

6-1 Work Done by a Constant Force Solving work problems: 1. Draw a free-body diagram. 2. Choose a coordinate system. 3. Apply Newton’s laws to determine any unknown forces. 4. Find the work done by a specific force. 5. To find the net work, either find the net force and then find the work it does, or find the work done by each force and add.

6-1 Work Done by a Constant Force Work done by forces that oppose the direction of motion, such as friction, will be negative. Centripetal forces do no work, as they are always perpendicular to the direction of motion.

Example 6-1 A person pulls a 50 kg crate 40 m along a horizontal floor by a constant force F P =100 N, which acts at a 37 degree angle. The floor is rough and exerts a friction force F fr =50 N. Determine (a) the work done by each force acting on the crate, and (b) the net work done on the crate.

Example 6-2 (a) Determine the work a hiker must do on a 15.0 kg backpack to carry it up a hill of height h=10.0 m. Determine also (b) the work done by gravity on the back pack, and (c) the net work done on the backpack. For simplicity, assume the motion is smooth and at constant velocity.

6-2 Work Done by a Varying Force For a force that varies, the work can be approximated by dividing the distance up into small pieces, finding the work done during each, and adding them up. As the pieces become very narrow, the work done is the area under the force vs. distance curve.

6-3 Kinetic Energy, and the Work-Energy Principle Energy was traditionally defined as the ability to do work. We now know that not all forces are able to do work; however, we are dealing in these chapters with mechanical energy, which does follow this definition.

6-3 Kinetic Energy, and the Work-Energy Principle If we write the acceleration in terms of the velocity and the distance, we find that the work done here is We define the kinetic energy: (6-2) (6-3)

6-3 Kinetic Energy, and the Work-Energy Principle This means that the work done is equal to the change in the kinetic energy: If the net work is positive, the kinetic energy increases. If the net work is negative, the kinetic energy decreases. (6-4)

6-3 Kinetic Energy, and the Work-Energy Principle Because work and kinetic energy can be equated, they must have the same units: kinetic energy is measured in joules.

Example 6-4 A 145 g baseball is thrown so that it acquires a speed of 25 m/s. (a) What is its kinetic energy? (b) What was the net work done on the ball to make it reach this speed, if it started from rest?

Example 6-5 How much net work is required to accelerate a kg car from 20. m/s to 30. m/s?

6-4 Potential Energy An object can have potential energy by virtue of its surroundings. Familiar examples of potential energy: A wound-up spring A stretched elastic band An object at some height above the ground

6-4 Potential Energy In raising a mass m to a height h, the work done by the external force is We therefore define the gravitational potential energy: (6-5a) (6-6)

6-4 Potential Energy This potential energy can become kinetic energy if the object is dropped. Potential energy is a property of a system as a whole, not just of the object (because it depends on external forces). If, where do we measure y from? It turns out not to matter, as long as we are consistent about where we choose y = 0. Only changes in potential energy can be measured.

Example 6-7 A Kg roller-coaster car moves from point 1 to point 2 and then to point 3. (a) What is the gravitational potential energy at point 2 and point 3 relative to point 1? That is, take y=0 at point 1. (b) What is the change in potential energy when the car goes from point 2 to point 3?

6-4 Potential Energy Potential energy can also be stored in a spring when it is compressed; the figure below shows potential energy yielding kinetic energy.

6-4 Potential Energy The force required to compress or stretch a spring is: where k is called the spring constant, and needs to be measured for each spring. This is known as Hooke’s Law. (6-8)

6-4 Potential Energy The force increases as the spring is stretched or compressed further. We find that the potential energy of the compressed or stretched spring, measured from its equilibrium position, can be written: (6-9)

6-5 Conservative and Nonconservative Forces If friction is present, the work done depends not only on the starting and ending points, but also on the path taken. Friction is called a nonconservative force.

6-5 Conservative and Nonconservative Forces Potential energy can only be defined for conservative forces.

6-5 Conservative and Nonconservative Forces Therefore, we distinguish between the work done by conservative forces and the work done by nonconservative forces. We find that the work done by nonconservative forces is equal to the total change in kinetic and potential energies: (6-10)

6-6 Mechanical Energy and Its Conservation If there are no nonconservative forces, the sum of the changes in the kinetic energy and in the potential energy is zero – the kinetic and potential energy changes are equal but opposite in sign. This allows us to define the total mechanical energy: And its conservation: (6-12b)