Parsing Based on presentations from Chris Manning’s course on Statistical Parsing (Stanford)

Slides:



Advertisements
Similar presentations
Natural Language Processing - Parsing 1 - Language, Syntax, Parsing Problems in Parsing Ambiguity, Attachment / Binding Bottom vs. Top Down Parsing.
Advertisements

Simplifying CFGs There are several ways in which context-free grammars can be simplified. One natural way is to eliminate useless symbols those that cannot.
PARSING WITH CONTEXT-FREE GRAMMARS
Parsing with Context Free Grammars Reading: Chap 13, Jurafsky & Martin
1 Statistical NLP: Lecture 12 Probabilistic Context Free Grammars.
March 1, 2009 Dr. Muhammed Al-Mulhem 1 ICS 482 Natural Language Processing Probabilistic Context Free Grammars (Chapter 14) Muhammed Al-Mulhem March 1,
CKY Parsing Ling 571 Deep Processing Techniques for NLP January 12, 2011.
Artificial Intelligence 2004 Natural Language Processing - Syntax and Parsing - Language, Syntax, Parsing Problems in Parsing Ambiguity, Attachment.
1 Earley Algorithm Chapter 13.4 October 2009 Lecture #9.
Parsing context-free grammars Context-free grammars specify structure, not process. There are many different ways to parse input in accordance with a given.
Parsing with CFG Ling 571 Fei Xia Week 2: 10/4-10/6/05.
Amirkabir University of Technology Computer Engineering Faculty AILAB Efficient Parsing Ahmad Abdollahzadeh Barfouroush Aban 1381 Natural Language Processing.
Parsing with PCFG Ling 571 Fei Xia Week 3: 10/11-10/13/05.
Basic Parsing with Context- Free Grammars 1 Some slides adapted from Julia Hirschberg and Dan Jurafsky.
Syntactic Parsing with CFGs CMSC 723: Computational Linguistics I ― Session #7 Jimmy Lin The iSchool University of Maryland Wednesday, October 14, 2009.
Artificial Intelligence 2004 Natural Language Processing - Syntax and Parsing - Language Syntax Parsing.
Parsing SLP Chapter 13. 7/2/2015 Speech and Language Processing - Jurafsky and Martin 2 Outline  Parsing with CFGs  Bottom-up, top-down  CKY parsing.
1 Basic Parsing with Context Free Grammars Chapter 13 September/October 2012 Lecture 6.
11 CS 388: Natural Language Processing: Syntactic Parsing Raymond J. Mooney University of Texas at Austin.
PARSING David Kauchak CS457 – Fall 2011 some slides adapted from Ray Mooney.
CS460/626 : Natural Language Processing/Speech, NLP and the Web (Lecture 29– CYK; Inside Probability; Parse Tree construction) Pushpak Bhattacharyya CSE.
Probabilistic Parsing Reading: Chap 14, Jurafsky & Martin This slide set was adapted from J. Martin, U. Colorado Instructor: Paul Tarau, based on Rada.
Intro to NLP - J. Eisner1 Earley’s Algorithm (1970) Nice combo of our parsing ideas so far:  no restrictions on the form of the grammar:  A.
1 Statistical Parsing Chapter 14 October 2012 Lecture #9.
1 CKY and Earley Algorithms Chapter 13 October 2012 Lecture #8.
SI485i : NLP Set 8 PCFGs and the CKY Algorithm. PCFGs We saw how CFGs can model English (sort of) Probabilistic CFGs put weights on the production rules.
LINGUISTICA GENERALE E COMPUTAZIONALE ANALISI SINTATTICA (PARSING)
May 2006CLINT-LN Parsing1 Computational Linguistics Introduction Parsing with Context Free Grammars.
October 2005csa3180: Parsing Algorithms 11 CSA350: NLP Algorithms Sentence Parsing I The Parsing Problem Parsing as Search Top Down/Bottom Up Parsing Strategies.
Parsing with Context Free Grammars CSC 9010 Natural Language Processing Paula Matuszek and Mary-Angela Papalaskari This slide set was adapted from: Jim.
Parsing I: Earley Parser CMSC Natural Language Processing May 1, 2003.
PARSING David Kauchak CS159 – Spring 2011 some slides adapted from Ray Mooney.
11 Chapter 14 Part 1 Statistical Parsing Based on slides by Ray Mooney.
Page 1 Probabilistic Parsing and Treebanks L545 Spring 2000.
Lecture 1, 7/21/2005Natural Language Processing1 CS60057 Speech &Natural Language Processing Autumn 2007 Lecture August 2007.
CS460/626 : Natural Language Processing/Speech, NLP and the Web (Lecture 29– CYK; Inside Probability; Parse Tree construction) Pushpak Bhattacharyya CSE.
Seven Lectures on Statistical Parsing Christopher Manning LSA Linguistic Institute 2007 LSA 354 Lecture 2.
CSA2050 Introduction to Computational Linguistics Parsing I.
Sentence Parsing Parsing 3 Dynamic Programming. Jan 2009 Speech and Language Processing - Jurafsky and Martin 2 Acknowledgement  Lecture based on  Jurafsky.
Natural Language - General
PARSING 2 David Kauchak CS159 – Spring 2011 some slides adapted from Ray Mooney.
NLP. Introduction to NLP Motivation –A lot of the work is repeated –Caching intermediate results improves the complexity Dynamic programming –Building.
Quick Speech Synthesis CMSC Natural Language Processing April 29, 2003.
CS 4705 Lecture 10 The Earley Algorithm. Review Top-Down vs. Bottom-Up Parsers –Both generate too many useless trees –Combine the two to avoid over-generation:
csa3050: Parsing Algorithms 11 CSA350: NLP Algorithms Parsing Algorithms 1 Top Down Bottom-Up Left Corner.
Natural Language Processing Lecture 15—10/15/2015 Jim Martin.
1 Syntax Sudeshna Sarkar 25 Aug Top-Down and Bottom-Up Top-down Only searches for trees that can be answers (i.e. S’s) But also suggests trees.
December 2011CSA3202: PCFGs1 CSA3202: Human Language Technology Probabilistic Phrase Structure Grammars (PCFGs)
GRAMMARS David Kauchak CS457 – Spring 2011 some slides adapted from Ray Mooney.
Instructor: Nick Cercone CSEB - 1 Parsing and Context Free Grammars Parsers, Top Down, Bottom Up, Left Corner, Earley.
October 2005CSA3180: Parsing Algorithms 21 CSA3050: NLP Algorithms Parsing Algorithms 2 Problems with DFTD Parser Earley Parsing Algorithm.
NLP. Introduction to NLP #include int main() { int n, reverse = 0; printf("Enter a number to reverse\n"); scanf("%d",&n); while (n != 0) { reverse =
November 2004csa3050: Parsing Algorithms 11 CSA350: NLP Algorithms Parsing Algorithms 1 Top Down Bottom-Up Left Corner.
PARSING David Kauchak CS159 – Fall Admin Assignment 3 Quiz #1  High: 36  Average: 33 (92%)  Median: 33.5 (93%)
CS460/626 : Natural Language Processing/Speech, NLP and the Web (Lecture 25– Probabilistic Parsing) Pushpak Bhattacharyya CSE Dept., IIT Bombay 14 th March,
Speech and Language Processing SLP Chapter 13 Parsing.
Natural Language Processing : Probabilistic Context Free Grammars Updated 8/07.
Natural Language Processing Vasile Rus
Statistical Natural Language Parsing Parsing: The rise of data and statistics.
1 Statistical methods in NLP Diana Trandabat
CSC 594 Topics in AI – Natural Language Processing
Parsing Recommended Reading: Ch th Jurafsky & Martin 2nd edition
Basic Parsing with Context Free Grammars Chapter 13
CSCI 5832 Natural Language Processing
Probabilistic and Lexicalized Parsing
Earley’s Algorithm (1970) Nice combo of our parsing ideas so far:
Parsing and More Parsing
CSA2050 Introduction to Computational Linguistics
Parsing I: CFGs & the Earley Parser
David Kauchak CS159 – Spring 2019
Presentation transcript:

Parsing Based on presentations from Chris Manning’s course on Statistical Parsing (Stanford)

S NVP VNP DN John hit theball

Levels of analysis LevelElements used Morphology/LexicalWords POS (morpho-synactic), WSDWords Shallow syntax parsingPhrases Full syntax parsingSentence NER, MWEPhrases SRLParsed trees Full semantic parsingParsed trees

Buffalo…

Parsing is a difficult task! ^______^ so excited! #Khaleesi #miniKhaleesi #GoT

Ambiguities  POS tags (e.g., books : a verb or a noun?)  Compositional expression meanings (e.g., he spilled the beans about his past)  Syntactic attachments (V N PP) (e.g., I ate my spaghettis with a fork)  Global semantic ambiguities (e.g., bear left at zoo) Usually, ambiguities in one layer may be resolved in upper layers

Ambiguities Fed raises interest rates 0.5 % in effort to control inflation

Motivation  Parsing may help to resolve ambiguities  Parsing is a step toward understanding the sentence completely  Was shown to improve the results of several NLP applications:  MT (Chiang, 2005)  Question answering (Hovy et al., 2000)  …

Grammar  S  NP VPNN  interest  NP  (DT) NNNNS  rates  NP  NN NNSNNS  raises  NP  NNPVBP  interest  VP  V NPVBZ  rates  …  Minimal grammar on “Fed raises” sentence: 36 parses  Simple 10 rule grammar: 592 parses  Real-size broad-coverage grammar: millions of parses

Size of grammar less more Number of rules Limits unlikely parses But grammar is not robust Parses more sentences But sentences end up with ever more parses

Statistical parsing Statistical parsing can help selecting the rules that best fit the input sentence, allowing the grammar to contain more rules

Treebanks ( (S (NP-SBJ (DT The) (NN move)) (VP (VBD followed) (NP (NP (DT a) (NN round)) (PP (IN of) (NP (NP (JJ similar) (NNS increases)) (PP (IN by) (NP (JJ other) (NNS lenders))) (PP (IN against) (NP (NNP Arizona) (JJ real) (NN estate) (NNS loans)))))) (,,) … The Penn Treebank Project (PTB): Arabic, English, Chinese, Persian, French,…

Advantages of treebanks  Reusability of the labor  Broad coverage  Frequencies and distributional information  A way to evaluate systems

Types of parsing Constituency parsingDependency parsing

Constituency parsing  Constituents are defined based on linguistic rules (phrases)  Constituents are recursive (NP may contain NP as part of its sub-constituents)  Different linguists may define constituents differently…

Dependency parsing Dependency structure shows which words depend on (modify or are arguments of) which other words

Parsing  We want to run a grammar backwards to find possible structures for a sentence  Parsing can be viewed as a search problem  We can do this bottom-up or top-down  We search by building a search tree which his distinct from the parse tree

Phrase structure grammars = context-free grammars (CFG)  G = (T, N, S, R)  T is set of terminals  N is set of nonterminals  S is the start symbol (one of the nonterminals)  R is rules/productions of the form X  , where X is a nonterminal and  is a sequence of terminals and nonterminals (possibly an empty sequence)  A grammar G generates a language L

Probabilistic or stochastic context-free grammars (PCFGs)  G = (T, N, S, R, P)  T is set of terminals  N is set of nonterminals  S is the start symbol (one of the nonterminals)  R is rules/productions of the form X  , where X is a nonterminal and  is a sequence of terminals and nonterminals (possibly an empty sequence)  P(R) gives the probability of each rule  A grammar G generates a language L

Soundness and completeness  A parser is sound if every parse it returns is valid/correct  A parser terminates if it is guaranteed to not go off into an infinite loop  A parser is complete if for any given grammar and sentence, it is sound, produces every valid parse for that sentence, and terminates (For many purposes, we settle for sound but incomplete parsers: e.g., probabilistic parsers that return a k-best list.)

Top down parsing  Top-down parsing is goal directed  A top-down parser starts with a list of constituents to be built. The top-down parser rewrites the goals in the goal list by matching one against the LHS of the grammar rules, and expanding it with the RHS, attempting to match the sentence to be derived  If a goal can be rewritten in several ways, then there is a choice of which rule to apply (search problem)  Can use depth-first or breadth-first search, and goal ordering

Top down parsing

Disadvantages of top down  A top-down parser will do badly if there are many different rules for the same LHS. Consider if there are 600 rules for S, 599 of which start with NP, but one of which starts with V, and the sentence starts with V  Useless work: expands things that are possible top- down but not there  Repeated work

Repeated work

Bottom up chart parsing  Bottom-up parsing is data directed  The initial goal list of a bottom-up parser is the string to be parsed. If a sequence in the goal list matches the RHS of a rule, then this sequence may be replaced by the LHS of the rule  Parsing is finished when the goal list contains just the start category  If the RHS of several rules match the goal list, then there is a choice of which rule to apply (search problem)  The standard presentation is as shift-reduce parsing

Shift-reduce parsing cats scratch people with claws catsscratch people with clawsSHIFT Nscratch people with clawsREDUCE NPscratch people with clawsREDUCE NP scratchpeople with clawsSHIFT NP Vpeople with clawsREDUCE NP V peoplewith clawsSHIFT NP V Nwith clawsREDUCE NP V NPwith clawsREDUCE NP V NP withclawsSHIFT NP V NP PclawsREDUCE NP V NP P clawsSHIFT NP V NP P NREDUCE NP V NP P NPREDUCE NP V NP PPREDUCE NP VPREDUCE SREDUCE

Disadvantages of bottom up  Useless work: locally possible, but globally impossible.  Inefficient when there is great lexical ambiguity (grammar- driven control might help here)  Repeated work: anywhere there is common substructure

Parsing as search  Left recursive structures must be found, not predicted  Doing these things doesn't fix the repeated work problem:  Both TD and BU parsers can (and frequently do) do work exponential in the sentence length on NLP problems  Grammar transformations can fix both left-recursion and epsilon productions  Then you parse the same language but with different trees (and fix them post hoc)

Dynamic programming  Rather than doing parsing-as-search, we do parsing as dynamic programming  Examples: CYK (bottom up), Early (top down)  It solves the problem of doing repeated work

Notation  w 1n = w 1 … w n = the word sequence from 1 to n  w ab = the subsequence w a … w b  N j ab = the nonterminal N j dominating w a … w b  We’ll write P(N i  ζ j ) to mean P(N i  ζ j | N i )  We’ll want to calculate max t P(t  * w ab )

Tree and sentence probabilities  P(t) -- The probability of tree is the product of the probabilities of the rules used to generate it  P(w 1n ) -- The probability of the sentence is the sum of the probabilities of the trees which have that sentence as their yield P(w 1n ) = Σ j P(w 1n, t) where t is a parse of w 1n = Σ j P(t)

Phrase structure grammars = context-free grammars (CFG)  G = (T, N, S, R)  T is set of terminals  N is set of nonterminals  S is the start symbol (one of the nonterminals)  R is rules/productions of the form X  , where X is a nonterminal and  is a sequence of terminals and nonterminals (possibly an empty sequence)  A grammar G generates a language L

Chomsky Normal Form (CNF)  All rules are of the form X  Y Z or X  w  A transformation to this form doesn’t change the generative capacity of CFG  With some extra book-keeping in symbol names, you can even reconstruct the same trees with a de-transform  Unaries/empties are removed recursively  N-ary rules introduce new non-terminals (binarization):  VP  V NP PP becomes VP   NP PP  In practice it’s a pain  Reconstructing n-aries is easy  Reconstructing unaries can be trickier  But it makes parsing easier/more efficient

A treebank tree ROOT S NP VP N cats V NP PP PNP claws withpeople scratch N N

After binarization P NP claws with NP N cats people scratch N VP V ROOT

CYK ( Cocke-Younger-Kasami) algorithm  A bottom-up parser using dynamic programming  Assume the PCFG is in Chomsky normal form (CNF)  Maintain |N| nXn tables µ (|N| = number of non- terminals, n = number of input words [length of input sentence])  Fill out the table entries by induction

“Can 1 you 2 book 3 ELAL 4 flights 5 ?” w1,1w1,2w1,3w1,4w1,5 w2,2w2,3w2,4w2,5 w3,3w3,4w3,5 w4,4w4,5 w5,

CYK Base case – Consider the input strings of length one (i.e., each individual word w i ) P(A  w i ) – Since the grammar is in CNF: A *  w i iff A  w i – So µ[i, i, A] = P(A  w i )

CYK Base case “Can 1 you 2 book 3 ELAL 4 flights 5 ?” Aux Noun ……

CYK Recursive case  For strings of words of length > 1, A *  w ij iff there is at least one rule A  BC where B derives the first k words (between i and i-1 +k ) and C derives the remaining ones (between i+k and j)  (for each non-terminal) Choose the max among all possibilities A CB ii-1+ki+kj µ [i, j, A)] = µ [i, i-1 +k, B] * µ [i+k, j, C] * P(A  BC)

CYK Termination The max prob parse will be µ [1, n, S] w1,1w1,2w1,3w1,4w1,5 w2,2w2,3w2,4w2,5 w3,3w3,4w3,5 w4,4w4,5 w5,5 S

Top down: Early algorithm  Finds constituents and partial constituents in input  A  B C. D E is partial: only the first half of the A A BCDE A  B C. D E D + = A BCDE A  B C D. E i j i k jk

Early algorithm  Proceeds incrementally, left-to-right  Before it reads word 5, it has already built all hypotheses that are consistent with first 4 words  Reads word 5 & attaches it to immediately preceding hypotheses. Might yield new constituents that are then attached to hypotheses immediately preceding them …  Use a parse table as we did in CKY, so we can look up anything we’ve discovered so far. “Dynamic programming.”

Example (grammar) ROOT  S S  NP VPNP  Papa NP  Det NN  caviar NP  NP PPN  spoon VP  VP PPV  ate VP  V NPP  with PP  P NPDet  the Det  a

0 0 ROOT. S initialize Remember this stands for (0, ROOT . S)

0 0 ROOT. S 0 S. NP VP predict the kind of S we are looking for Remember this stands for (0, S . NP VP)

0 0 ROOT. S 0 S. NP VP 0 NP. Det N 0 NP. NP PP 0 NP. Papa predict the kind of NP we are looking for (actually we’ll look for 3 kinds: any of the 3 will do)

0 0 ROOT. S 0 S. NP VP 0 NP. Det N 0 NP. NP PP 0 NP. Papa 0 Det. the 0 Det. a predict the kind of Det we are looking for (2 kinds)

0 0 ROOT. S 0 S. NP VP 0 NP. Det N 0 NP. NP PP 0 NP. Papa 0 Det. the 0 Det. a predict the kind of NP we’re looking for but we were already looking for these so don’t add duplicate goals! Note that this happened when we were processing a left-recursive rule.

0 Papa 1 0 ROOT. S0 NP Papa. 0 S. NP VP 0 NP. Det N 0 NP. NP PP 0 NP. Papa 0 Det. the 0 Det. a scan: the desired word is in the input!

0 Papa 1 0 ROOT. S0 NP Papa. 0 S. NP VP 0 NP. Det N 0 NP. NP PP 0 NP. Papa 0 Det. the 0 Det. a scan: failure

0 Papa 1 0 ROOT. S0 NP Papa. 0 S. NP VP 0 NP. Det N 0 NP. NP PP 0 NP. Papa 0 Det. the 0 Det. a scan: failure

0 Papa 1 0 ROOT. S0 NP Papa. 0 S. NP VP0 S NP. VP 0 NP. Det N0 NP NP. PP 0 NP. NP PP 0 NP. Papa 0 Det. the 0 Det. a attach the newly created NP (which starts at 0) to its customers (incomplete constituents that end at 0 and have NP after the dot)

0 Papa 1 0 ROOT. S0 NP Papa. 0 S. NP VP0 S NP. VP 0 NP. Det N0 NP NP. PP 0 NP. NP PP1 VP. V NP 0 NP. Papa1 VP. VP PP 0 Det. the 0 Det. a predict

0 Papa 1 0 ROOT. S0 NP Papa. 0 S. NP VP0 S NP. VP 0 NP. Det N0 NP NP. PP 0 NP. NP PP1 VP. V NP 0 NP. Papa1 VP. VP PP 0 Det. the1 PP. P NP 0 Det. a predict

0 Papa 1 0 ROOT. S0 NP Papa. 0 S. NP VP0 S NP. VP 0 NP. Det N0 NP NP. PP 0 NP. NP PP1 VP. V NP 0 NP. Papa1 VP. VP PP 0 Det. the1 PP. P NP 0 Det. a1 V. ate predict

0 Papa 1 0 ROOT. S0 NP Papa. 0 S. NP VP0 S NP. VP 0 NP. Det N0 NP NP. PP 0 NP. NP PP1 VP. V NP 0 NP. Papa1 VP. VP PP 0 Det. the1 PP. P NP 0 Det. a1 V. ate predict

0 Papa 1 0 ROOT. S0 NP Papa. 0 S. NP VP0 S NP. VP 0 NP. Det N0 NP NP. PP 0 NP. NP PP1 VP. V NP 0 NP. Papa1 VP. VP PP 0 Det. the1 PP. P NP 0 Det. a1 V. ate 1 P. with predict

0 Papa 1 ate 2 0 ROOT. S0 NP Papa.1 V ate. 0 S. NP VP0 S NP. VP 0 NP. Det N0 NP NP. PP 0 NP. NP PP1 VP. V NP 0 NP. Papa1 VP. VP PP 0 Det. the1 PP. P NP 0 Det. a1 V. ate 1 P. with scan: success!

0 Papa 1 ate 2 0 ROOT. S0 NP Papa.1 V ate. 0 S. NP VP0 S NP. VP 0 NP. Det N0 NP NP. PP 0 NP. NP PP1 VP. V NP 0 NP. Papa1 VP. VP PP 0 Det. the1 PP. P NP 0 Det. a1 V. ate 1 P. with scan: failure

0 Papa 1 ate 2 0 ROOT. S0 NP Papa.1 V ate. 0 S. NP VP0 S NP. VP1 VP V. NP 0 NP. Det N0 NP NP. PP 0 NP. NP PP1 VP. V NP 0 NP. Papa1 VP. VP PP 0 Det. the1 PP. P NP 0 Det. a1 V. ate 1 P. with attach

0 Papa 1 ate 2 0 ROOT. S0 NP Papa.1 V ate. 0 S. NP VP0 S NP. VP1 VP V. NP 0 NP. Det N0 NP NP. PP2 NP. Det N 0 NP. NP PP1 VP. V NP2 NP. NP PP 0 NP. Papa1 VP. VP PP2 NP. Papa 0 Det. the1 PP. P NP 0 Det. a1 V. ate 1 P. with predict

0 Papa 1 ate 2 0 ROOT. S0 NP Papa.1 V ate. 0 S. NP VP0 S NP. VP1 VP V. NP 0 NP. Det N0 NP NP. PP2 NP. Det N 0 NP. NP PP1 VP. V NP2 NP. NP PP 0 NP. Papa1 VP. VP PP2 NP. Papa 0 Det. the1 PP. P NP2 Det. the 0 Det. a1 V. ate2 Det. a 1 P. with predict (these next few steps should look familiar)

0 Papa 1 ate 2 0 ROOT. S0 NP Papa.1 V ate. 0 S. NP VP0 S NP. VP1 VP V. NP 0 NP. Det N0 NP NP. PP2 NP. Det N 0 NP. NP PP1 VP. V NP2 NP. NP PP 0 NP. Papa1 VP. VP PP2 NP. Papa 0 Det. the1 PP. P NP2 Det. the 0 Det. a1 V. ate2 Det. a 1 P. with predict

0 Papa 1 ate 2 0 ROOT. S0 NP Papa.1 V ate. 0 S. NP VP0 S NP. VP1 VP V. NP 0 NP. Det N0 NP NP. PP2 NP. Det N 0 NP. NP PP1 VP. V NP2 NP. NP PP 0 NP. Papa1 VP. VP PP2 NP. Papa 0 Det. the1 PP. P NP2 Det. the 0 Det. a1 V. ate2 Det. a 1 P. with scan (this time we fail since Papa is not the next word)

0 Papa 1 ate 2 the 3 0 ROOT. S0 NP Papa.1 V ate.2 Det the. 0 S. NP VP0 S NP. VP1 VP V. NP 0 NP. Det N0 NP NP. PP2 NP. Det N 0 NP. NP PP1 VP. V NP2 NP. NP PP 0 NP. Papa1 VP. VP PP2 NP. Papa 0 Det. the1 PP. P NP2 Det. the 0 Det. a1 V. ate2 Det. a 1 P. with scan: success!

0 Papa 1 ate 2 the 3 0 ROOT. S0 NP Papa.1 V ate.2 Det the. 0 S. NP VP0 S NP. VP1 VP V. NP 0 NP. Det N0 NP NP. PP2 NP. Det N 0 NP. NP PP1 VP. V NP2 NP. NP PP 0 NP. Papa1 VP. VP PP2 NP. Papa 0 Det. the1 PP. P NP2 Det. the 0 Det. a1 V. ate2 Det. a 1 P. with

0 Papa 1 ate 2 the 3 0 ROOT. S0 NP Papa.1 V ate.2 Det the. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N 0 NP. Det N0 NP NP. PP2 NP. Det N 0 NP. NP PP1 VP. V NP2 NP. NP PP 0 NP. Papa1 VP. VP PP2 NP. Papa 0 Det. the1 PP. P NP2 Det. the 0 Det. a1 V. ate2 Det. a 1 P. with

0 Papa 1 ate 2 the 3 0 ROOT. S0 NP Papa.1 V ate.2 Det the. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon 0 NP. Papa1 VP. VP PP2 NP. Papa 0 Det. the1 PP. P NP2 Det. the 0 Det. a1 V. ate2 Det. a 1 P. with

0 Papa 1 ate 2 the 3 caviar 4 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon 0 NP. Papa1 VP. VP PP2 NP. Papa 0 Det. the1 PP. P NP2 Det. the 0 Det. a1 V. ate2 Det. a 1 P. with

0 Papa 1 ate 2 the 3 caviar 4 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon 0 NP. Papa1 VP. VP PP2 NP. Papa 0 Det. the1 PP. P NP2 Det. the 0 Det. a1 V. ate2 Det. a 1 P. with

0 Papa 1 ate 2 the 3 caviar 4 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N. 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon 0 NP. Papa1 VP. VP PP2 NP. Papa 0 Det. the1 PP. P NP2 Det. the 0 Det. a1 V. ate2 Det. a 1 P. with attach

0 Papa 1 ate 2 the 3 caviar 4 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N. 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP. 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP 0 NP. Papa1 VP. VP PP2 NP. Papa 0 Det. the1 PP. P NP2 Det. the 0 Det. a1 V. ate2 Det. a 1 P. with attach (again!)

0 Papa 1 ate 2 the 3 caviar 4 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N. 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP. 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP. 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP 0 Det. a1 V. ate2 Det. a 1 P. with attach (again!)

0 Papa 1 ate 2 the 3 caviar 4 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N. 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP. 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP. 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP 0 Det. a1 V. ate2 Det. a4 PP. P NP 1 P. with

0 Papa 1 ate 2 the 3 caviar 4 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N. 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP. 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP. 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP 0 Det. a1 V. ate2 Det. a4 PP. P NP 1 P. with0 ROOT S. attach (again!)

0 Papa 1 ate 2 the 3 caviar 4 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N. 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP. 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP. 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP 0 Det. a1 V. ate2 Det. a4 PP. P NP 1 P. with0 ROOT S.

0 Papa 1 ate 2 the 3 caviar 4 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N. 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP. 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP. 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP 0 Det. a1 V. ate2 Det. a4 PP. P NP 1 P. with0 ROOT S. 4 P. with

0 Papa 1 ate 2 the 3 caviar 4 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N. 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP. 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP. 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP 0 Det. a1 V. ate2 Det. a4 PP. P NP 1 P. with0 ROOT S. 4 P. with

0 Papa 1 ate 2 the 3 caviar 4 with 5 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar.4 P with. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N. 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP. 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP. 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP 0 Det. a1 V. ate2 Det. a4 PP. P NP 1 P. with0 ROOT S. 4 P. with

0 Papa 1 ate 2 the 3 caviar 4 with 5 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar.4 P with. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N.4 PP P. NP 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP. 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP. 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP 0 Det. a1 V. ate2 Det. a4 PP. P NP 1 P. with0 ROOT S. 4 P. with

0 Papa 1 ate 2 the 3 caviar 4 with 5 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar.4 P with. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N.4 PP P. NP 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP.5 NP. Det N 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP5 NP. NP PP 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP.5 NP. Papa 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP 0 Det. a1 V. ate2 Det. a4 PP. P NP 1 P. with0 ROOT S. 4 P. with

0 Papa 1 ate 2 the 3 caviar 4 with 5 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar.4 P with. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N.4 PP P. NP 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP.5 NP. Det N 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP5 NP. NP PP 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP.5 NP. Papa 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP5 Det. the 0 Det. a1 V. ate2 Det. a4 PP. P NP5 Det. a 1 P. with0 ROOT S. 4 P. with

0 Papa 1 ate 2 the 3 caviar 4 with 5 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar.4 P with. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N.4 PP P. NP 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP.5 NP. Det N 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP5 NP. NP PP 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP.5 NP. Papa 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP5 Det. the 0 Det. a1 V. ate2 Det. a4 PP. P NP5 Det. a 1 P. with0 ROOT S. 4 P. with

0 Papa 1 ate 2 the 3 caviar 4 with 5 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar.4 P with. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N.4 PP P. NP 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP.5 NP. Det N 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP5 NP. NP PP 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP.5 NP. Papa 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP5 Det. the 0 Det. a1 V. ate2 Det. a4 PP. P NP5 Det. a 1 P. with0 ROOT S. 4 P. with

0 Papa 1 ate 2 the 3 caviar 4 with 5 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar.4 P with. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N.4 PP P. NP 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP.5 NP. Det N 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP5 NP. NP PP 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP.5 NP. Papa 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP5 Det. the 0 Det. a1 V. ate2 Det. a4 PP. P NP5 Det. a 1 P. with0 ROOT S. 4 P. with

0 Papa 1 ate 2 the 3 caviar 4 with 5 a 6 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar.4 P with.5 Det a. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N.4 PP P. NP 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP.5 NP. Det N 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP5 NP. NP PP 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP.5 NP. Papa 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP5 Det. the 0 Det. a1 V. ate2 Det. a4 PP. P NP5 Det. a 1 P. with0 ROOT S. 4 P. with

0 Papa 1 ate 2 the 3 caviar 4 with 5 a 6 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar.4 P with.5 Det a. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N.4 PP P. NP5 NP Det. N 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP.5 NP. Det N 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP5 NP. NP PP 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP.5 NP. Papa 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP5 Det. the 0 Det. a1 V. ate2 Det. a4 PP. P NP5 Det. a 1 P. with0 ROOT S. 4 P. with

0 Papa 1 ate 2 the 3 caviar 4 with 5 a 6 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar.4 P with.5 Det a. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N.4 PP P. NP5 NP Det. N 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP.5 NP. Det N6 N. caviar 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP5 NP. NP PP6 N. spoon 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP.5 NP. Papa 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP5 Det. the 0 Det. a1 V. ate2 Det. a4 PP. P NP5 Det. a 1 P. with0 ROOT S. 4 P. with

0 Papa 1 ate 2 the 3 caviar 4 with 5 a 6 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar.4 P with.5 Det a. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N.4 PP P. NP5 NP Det. N 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP.5 NP. Det N6 N. caviar 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP5 NP. NP PP6 N. spoon 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP.5 NP. Papa 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP5 Det. the 0 Det. a1 V. ate2 Det. a4 PP. P NP5 Det. a 1 P. with0 ROOT S. 4 P. with

0 Papa 1 ate 2 the 3 caviar 4 with 5 a 6 spoon 7 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar.4 P with.5 Det a.6 N spoon. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N.4 PP P. NP5 NP Det. N 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP.5 NP. Det N6 N. caviar 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP5 NP. NP PP6 N. spoon 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP.5 NP. Papa 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP5 Det. the 0 Det. a1 V. ate2 Det. a4 PP. P NP5 Det. a 1 P. with0 ROOT S. 4 P. with

0 Papa 1 ate 2 the 3 caviar 4 with 5 a 6 spoon 7 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar.4 P with.5 Det a.6 N spoon. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N.4 PP P. NP5 NP Det. N5 NP Det N. 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP.5 NP. Det N6 N. caviar 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP5 NP. NP PP6 N. spoon 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP.5 NP. Papa 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP5 Det. the 0 Det. a1 V. ate2 Det. a4 PP. P NP5 Det. a 1 P. with0 ROOT S. 4 P. with

0 Papa 1 ate 2 the 3 caviar 4 with 5 a 6 spoon 7 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar.4 P with.5 Det a.6 N spoon. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N.4 PP P. NP5 NP Det. N5 NP Det N. 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP.5 NP. Det N6 N. caviar4 PP P NP. 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP5 NP. NP PP6 N. spoon5 NP NP. PP 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP.5 NP. Papa 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP5 Det. the 0 Det. a1 V. ate2 Det. a4 PP. P NP5 Det. a 1 P. with0 ROOT S. 4 P. with

0 Papa 1 ate 2 the 3 caviar 4 with a spoon 7 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar. … 6 N spoon. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N.5 NP Det N. 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP.4 PP P NP. 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP5 NP NP. PP 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP.2 NP NP PP. 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP1 VP VP PP. 0 Det. a1 V. ate2 Det. a4 PP. P NP 1 P. with0 ROOT S. 4 P. with

0 Papa 1 ate 2 the 3 caviar 4 with a spoon 7 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar. … 6 N spoon. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N.5 NP Det N. 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP.4 PP P NP. 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP5 NP NP. PP 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP.2 NP NP PP. 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP1 VP VP PP. 0 Det. a1 V. ate2 Det. a4 PP. P NP7 PP. P NP 1 P. with0 ROOT S. 4 P. with

0 Papa 1 ate 2 the 3 caviar 4 with a spoon 7 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar. … 6 N spoon. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N.5 NP Det N. 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP.4 PP P NP. 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP5 NP NP. PP 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP.2 NP NP PP. 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP1 VP VP PP. 0 Det. a1 V. ate2 Det. a4 PP. P NP7 PP. P NP 1 P. with0 ROOT S.1 VP V NP. 4 P. with2 NP NP. PP

0 Papa 1 ate 2 the 3 caviar 4 with a spoon 7 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar. … 6 N spoon. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N.5 NP Det N. 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP.4 PP P NP. 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP5 NP NP. PP 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP.2 NP NP PP. 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP1 VP VP PP. 0 Det. a1 V. ate2 Det. a4 PP. P NP7 PP. P NP 1 P. with0 ROOT S.1 VP V NP. 4 P. with2 NP NP. PP 0 S NP VP. 1 VP VP. PP

0 Papa 1 ate 2 the 3 caviar 4 with a spoon 7 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar. … 6 N spoon. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N.5 NP Det N. 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP.4 PP P NP. 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP5 NP NP. PP 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP.2 NP NP PP. 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP1 VP VP PP. 0 Det. a1 V. ate2 Det. a4 PP. P NP7 PP. P NP 1 P. with0 ROOT S.1 VP V NP. 4 P. with2 NP NP. PP 0 S NP VP. 1 VP VP. PP 7 P. with

0 Papa 1 ate 2 the 3 caviar 4 with a spoon 7 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar. … 6 N spoon. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N.5 NP Det N. 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP.4 PP P NP. 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP5 NP NP. PP 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP.2 NP NP PP. 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP1 VP VP PP. 0 Det. a1 V. ate2 Det. a4 PP. P NP7 PP. P NP 1 P. with0 ROOT S.1 VP V NP. 4 P. with2 NP NP. PP 0 S NP VP. 1 VP VP. PP 7 P. with

0 Papa 1 ate 2 the 3 caviar 4 with a spoon 7 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar. … 6 N spoon. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N.5 NP Det N. 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP.4 PP P NP. 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP5 NP NP. PP 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP.2 NP NP PP. 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP1 VP VP PP. 0 Det. a1 V. ate2 Det. a4 PP. P NP7 PP. P NP 1 P. with0 ROOT S.1 VP V NP. 4 P. with2 NP NP. PP 0 S NP VP. 1 VP VP. PP 7 P. with

0 Papa 1 ate 2 the 3 caviar 4 with a spoon 7 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar. … 6 N spoon. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N.5 NP Det N. 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP.4 PP P NP. 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP5 NP NP. PP 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP.2 NP NP PP. 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP1 VP VP PP. 0 Det. a1 V. ate2 Det. a4 PP. P NP7 PP. P NP 1 P. with0 ROOT S.1 VP V NP. 4 P. with2 NP NP. PP 0 S NP VP. 1 VP VP. PP 7 P. with 0 ROOT S.

0 Papa 1 ate 2 the 3 caviar 4 with a spoon 7 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar. … 6 N spoon. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N.5 NP Det N. 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP.4 PP P NP. 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP5 NP NP. PP 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP.2 NP NP PP. 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP1 VP VP PP. 0 Det. a1 V. ate2 Det. a4 PP. P NP7 PP. P NP 1 P. with0 ROOT S.1 VP V NP. 4 P. with2 NP NP. PP 0 S NP VP. 1 VP VP. PP 7 P. with 0 ROOT S.

0 Papa 1 ate 2 the 3 caviar 4 with a spoon 7 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar. … 6 N spoon. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N.5 NP Det N. 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP.4 PP P NP. 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP5 NP NP. PP 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP.2 NP NP PP. 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP1 VP VP PP. 0 Det. a1 V. ate2 Det. a4 PP. P NP7 PP. P NP 1 P. with0 ROOT S.1 VP V NP. 4 P. with2 NP NP. PP 0 S NP VP. 1 VP VP. PP 7 P. with 0 ROOT S.

0 Papa 1 ate 2 the 3 caviar 4 with a spoon 7 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar. … 6 N spoon. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N.5 NP Det N. 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP.4 PP P NP. 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP5 NP NP. PP 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP.2 NP NP PP. 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP1 VP VP PP. 0 Det. a1 V. ate2 Det. a4 PP. P NP7 PP. P NP 1 P. with0 ROOT S.1 VP V NP. 4 P. with2 NP NP. PP 0 S NP VP. 1 VP VP. PP 7 P. with 0 ROOT S.

0 Papa 1 ate 2 the 3 caviar 4 with a spoon 7 0 ROOT. S0 NP Papa.1 V ate.2 Det the.3 N caviar. … 6 N spoon. 0 S. NP VP0 S NP. VP1 VP V. NP2 NP Det. N2 NP Det N.5 NP Det N. 0 NP. Det N0 NP NP. PP2 NP. Det N3 N. caviar1 VP V NP.4 PP P NP. 0 NP. NP PP1 VP. V NP2 NP. NP PP3 N. spoon2 NP NP. PP5 NP NP. PP 0 NP. Papa1 VP. VP PP2 NP. Papa0 S NP VP.2 NP NP PP. 0 Det. the1 PP. P NP2 Det. the1 VP VP. PP1 VP VP PP. 0 Det. a1 V. ate2 Det. a4 PP. P NP7 PP. P NP 1 P. with0 ROOT S.1 VP V NP. 4 P. with2 NP NP. PP 0 S NP VP. 1 VP VP. PP 7 P. with 0 ROOT S.