1 Helping online communities to semantically enrich folksonomies ISICIL, mai 2010 Freddy Limpens, Fabien Gandon Edelweiss, INRIA Sophia Antipolis {freddy.limpens, Michel Buffa Kewi, I3S, Univerité Nice-Sophia Antipolis Edelweiss
2 How to turn folksonomies......into comprehensible topic structures ? ? pollution Soil pollutions has narrower pollutant Energy related
3 … without overloading users
4 … and by collecting all user's expertise into the process
5 Our approach Integrate usage-analysis for a tailored solution Supporting diverging points of view Automatic processings + Human expertise through user-friendly interfaces
6 Concrete scenario Experts produce docs + tag Archivists centralize + tag Public audience read + tag
1. Modeling statements about tags
8 Supporting diverging points of view car pollution skos:related
9 car pollution John Paul Supporting diverging points of view agrees disagrees skos:related
Supporting diverging points of view 10 car pollution skos:related John Paul hasApproved hasRejected tagSemanticStatement (named graph)
Supporting diverging points of view
2. folksonomy enrichment Life cycle
13 Dataset DeliciousTheseNetCADIC What Bookmarks of users of tag "ademe" Keywords for Ademe's PhD projects Archivists indexing lexicon # tags # posts # (restricted tagging) # users
ADDING TAGS Automatic processing User-centric structuring User-centric structuring Detect conflicts Global structuring Global structuring Flat folksonom y Structured folksonom y Folksonomy enrichment life-cycle
15 pollution pollutant pollution Soil pollutions 1. String-based metrics
16 Evaluation of 30 edit distances Combining the best metrics Needs complement ! 1. String-based metrics
17 1. String-based metrics Evaluated against Ademe expert's point of view
Related55,10% Broader/narrower32% CloseMatch12,82% Result on full dataset
Node size ↔ InDegree ◉ tags (delicious + thesenet) ◉ mot-clés svic
Result on full dataset Node size ↔ InDegree ◉ tags (delicious + thesenet) ◉ mot-clés svic
21 Fig. Markines et al. (2009) Association via : Users tags 2. Tri-partite structure of folksonomies
tag1tag2tag3 tag1freq (tag1)cooc (tag1, tag2)cooc (tag1, tag3) tag2cooc (tag2, tag1)freq (tag2)cooc (tag2, tag3) tag3cooc (tag3, tag1)cooc (tag3, tag2)freq (tag3) 2. Tri-partite structure of folksonomies Tag-based association : => gives "related" relations
Example result on CADIC dataset:
2. Tri-partite structure of folksonomies User-based association (Mika) : environnement agriculture U1 U1 U2 U2 U3 U3 U4 U4 U6 U6 => gives "subsumption" relations
Example result on Delicious dataset: Arrows mean "has broader" thickness ≈ weight
TheseNet dataset: Arrows mean "has broader" thickness ≈ weight
ADDING TAGS Automatic processing User-centric structuring User-centric structuring Detect conflicts Global structuring Global structuring Flat folksonom y Structured folksonom y Folksonomy enrichment life-cycle
28 Embedding structuring tasks within everyday activity (searching e.g)
29 Embedding structuring tasks within everyday activity (searching e.g)
30 Capturing user's point of view
31 Experimentation ADEME
ADDING TAGS Automatic processing User-centric structuring User-centric structuring Detect conflicts Global structuring Global structuring Flat folksonom y Structured folksonom y Folksonomy enrichment life-cycle
33 Conflict detection environment pollution narrower broader
34 Conflict detection environment pollution narrower broader Using rules e.g: IF num(narrower)/num(broader) ≥ c THEN narrower wins ELSE 'more generic' wins
35 Conflict detection environment pollution narrower broader related broader narrower more generic
Ademe experimentation Total number of relations125 Contradictory43 Consensual14 Only rejected (to be deleted ?)2 Only proposed by computer (no user review)52 Debated (approved AND rejected at least once)14
Example result on Ademe's experimentation subset
ADDING TAGS Automatic processing User-centric structuring User-centric structuring Detect conflicts Global structuring Global structuring Flat folksonom y Structured folksonom y Folksonomy enrichment life-cycle
40 environment pollution related ReferentUser Global structuring by Referent hasApproved
ADDING TAGS Automatic processing User-centric structuring User-centric structuring Detect conflicts Global structuring Global structuring Flat folksonom y Structured folksonom y Folksonomy enrichment life-cycle
43 Take away message (conclusion)
44 Help communities structure their tags What we do :
45 Our contributions: Usages analysis Automatic processing of tags Tag structuring embedded in every-day tools Supporting multi-points of view
46 Future work Interfaces : to capture user-centric contributions Global administrations (Referent User) Tag searching Real-scale experimentation Mapping between knowledge representation (Gemet thesaurus – Tags – CADIC e.g.) Moving to other socio-structural models
47 Thank you !
48
49 What is a tag ?
50 Tagging model
51 Tagging model
52 Hypotheses Tag-link is thematic Tags are concept- candidate
53 Supporting diverging points of view
54 An eco-system of agents
55
56 Tags are nice to organize your own resources...
57... but also to get involved in the organization of shared resources