DECOI: Social Simulation - August 20071 Social Simulation Branimir Cace, Carlos Grilo, Arne Handt, Pablo Rabanal & Scott Stensland.

Slides:



Advertisements
Similar presentations
Agent-Based Modeling PSC 120 Jeff Schank. Agent-Based Modeling What Phenomena are Agent-Based Models Good for? What is Agent-Based Modeling (ABM)? What.
Advertisements

Tetris – Genetic Algorithm Presented by, Jeethan & Jun.
Life history characteristics. Organisms face fundamental trade-offs in their use of energy and time Changes in life history are caused by changes in the.
On the Genetic Evolution of a Perfect Tic-Tac-Toe Strategy
A PARALLEL GENETIC ALGORITHM FOR SOLVING THE SCHOOL TIME TABLING PROBLEM SUMALATHA.
CHAPTER 8 A NNEALING- T YPE A LGORITHMS Organization of chapter in ISSO –Introduction to simulated annealing –Simulated annealing algorithm Basic algorithm.
Alexa Curcio. Original Problem : Would a restriction on height, such as prohibiting males from marrying taller females, affect the height of the entire.
Optimizing genetic algorithm strategies for evolving networks Matthew Berryman.
Content Based Image Clustering and Image Retrieval Using Multiple Instance Learning Using Multiple Instance Learning Xin Chen Advisor: Chengcui Zhang Department.
Integrating Bayesian Networks and Simpson’s Paradox in Data Mining Alex Freitas University of Kent Ken McGarry University of Sunderland.
The Bio-Networking Architecture: Adaptation of Network Applications through Biological Evolution Jun Suzuki and Tatsuya Suda {jsuzuki,
Optimization via Search CPSC 315 – Programming Studio Spring 2009 Project 2, Lecture 4 Adapted from slides of Yoonsuck Choe.
NEW TIES WP2 Agent and learning mechanisms. Decision making and learning Agents have a controller (decision tree, DQT)  Input: situation (as perceived.
Fig. 1-3: The long run growth rate for the entire population, for different numbers of subpopulations. Fig. 1: high level of growth rate synchrony among.
Evolutionary Computational Intelligence
Investigating the why of the commerce, by starting from a plausible primordial world model.
Evolutionary Computation Application Peter Andras peter.andras/lectures.
Genetic Algorithms Nehaya Tayseer 1.Introduction What is a Genetic algorithm? A search technique used in computer science to find approximate solutions.
S519: Evaluation of Information Systems Social Statistics Inferential Statistics Chapter 8: Significantly significant.
Limits on Population can the world be taken over by one organism?
Examples of Evolution
Optimization via Search CPSC 315 – Programming Studio Spring 2008 Project 2, Lecture 4 Adapted from slides of Yoonsuck Choe.
Marcus Gallagher and Mark Ledwich School of Information Technology and Electrical Engineering University of Queensland, Australia Sumaira Saeed Evolving.
© 2008 McGraw-Hill Higher Education The Statistical Imagination Chapter 9. Hypothesis Testing I: The Six Steps of Statistical Inference.
 The “4 Steps” of Hypothesis Testing: 1. State the hypothesis 2. Set decision criteria 3. Collect data and compute sample statistic 4. Make a decision.
Genetic Algorithm.
SOFT COMPUTING (Optimization Techniques using GA) Dr. N.Uma Maheswari Professor/CSE PSNA CET.
Chapter 16 evolution of sex. Adaptive significance of sex Many risks and costs associated with sexual reproduction. Searching for and courting a mate.
Boltzmann Machine (BM) (§6.4) Hopfield model + hidden nodes + simulated annealing BM Architecture –a set of visible nodes: nodes can be accessed from outside.
Genetic algorithms Charles Darwin "A man who dares to waste an hour of life has not discovered the value of life"
Sequential Expected Utility Theory: Sequential Sampling in Economic Decision Making under Risk Andrea Isoni Andrea Isoni (Warwick) Graham Loomes Graham.
1.Behavior geneticists study the genetic basis of behavior and personality differences among people. 2.The more closely people are biologically related,
2005MEE Software Engineering Lecture 11 – Optimisation Techniques.
Starter: What does the following term mean to you? “Natural selection by survival of the fittest”
Learning by Simulating Evolution Artificial Intelligence CSMC February 21, 2002.
Section 3.3: The Story of Statistical Inference Section 4.1: Testing Where a Proportion Is.
Why do GAs work? Symbol alphabet : {0, 1, * } * is a wild card symbol that matches both 0 and 1 A schema is a string with fixed and variable symbols 01*1*
Emergence in Artificial Societies Evolving Communication and Cooperation in a Sugarscape world by Pieter Buzing.
Edge Assembly Crossover
Probabilistic Algorithms Evolutionary Algorithms Simulated Annealing.
Natural Selection Problem
Introduction Suppose that a pharmaceutical company is concerned that the mean potency  of an antibiotic meet the minimum government potency standards.
1 Simulation Scenarios. 2 Computer Based Experiments Systematically planning and conducting scientific studies that change experimental variables together.
Genetic Algorithms Chapter Description of Presentations
Artificial Intelligence By Mr. Ejaz CIIT Sahiwal Evolutionary Computation.
Overview Last two weeks we looked at evolutionary algorithms.
1 Comparative Study of two Genetic Algorithms Based Task Allocation Models in Distributed Computing System Oğuzhan TAŞ 2005.
EVOLUTION JEOPARDY August 2014.
Darwin vs. Lamarck. What is a theory? An explanation of some aspect of the natural world based on the best available evidence Summarizes hypotheses that.
Genetic Algorithm(GA)
Genetic Algorithm. Outline Motivation Genetic algorithms An illustrative example Hypothesis space search.
 Presented By: Abdul Aziz Ghazi  Roll No:  Presented to: Sir Harris.
Hirophysics.com The Genetic Algorithm vs. Simulated Annealing Charles Barnes PHY 327.
Evolutionary Computation Evolving Neural Network Topologies.
Chapter 14 Genetic Algorithms.
Introduction to Genetic Algorithms and Evolutionary Computing
How was Darwin’s Theory Shaped by other scientists?
How was Darwin’s Theory Shaped by other scientists?
Introduction to Statistics for Engineers
Inference and Tests of Hypotheses
…this polar bear was bright pink?
Mechanisms of Evolution
Genetic Algorithms, Search Algorithms
Basics of Genetic Algorithms (MidTerm – only in RED material)
Chapter 11: Introduction to Hypothesis Testing Lecture 5b
Basics of Genetic Algorithms
Boltzmann Machine (BM) (§6.4)
Unit 4: Principles of Ecology
Unsupervised Machine Learning in Agent-Based Modeling
Coevolutionary Automated Software Correction
Presentation transcript:

DECOI: Social Simulation - August Social Simulation Branimir Cace, Carlos Grilo, Arne Handt, Pablo Rabanal & Scott Stensland

DECOI: Social Simulation - August Outline ► The Scenario and How We Modeled It ► The Hypothesis and Our Observations ► Experimental Results ► Conclusions

DECOI: Social Simulation - August The Scenario                     

DECOI: Social Simulation - August Plants ► Plants are either nutritious or poisonous (binary) ► Each plant P has an attribute r P („redness“):  r P  [ 0 ; 1 ]  set randomly upon creation of a plant ► Global parameter t (poison threshold):  t  [ 0 ; 1 ]  A plant P is nutritious  r p < t (to be explained below)  determines probability of plants being nutritious ► Plants are created at random  sprouting at a random place in the simulation area  no inheritance of redness poisonous nutritious rPrP 1 0 t

DECOI: Social Simulation - August Agents - Basics ► Each agent A has an energy level e A  e A ≤ 0  A dies ► Each agent A has an age a A  a A  a A + 1 at each step(aging)  a A > s  A dies(max. lifespan)  s is a global lifespan parameter ► Agents move around randomly. ► Agents are either male or female. ► Agents can see the redness of plants.

DECOI: Social Simulation - August Agents - The Filter Gene ► Each agent A has a gene f A (filter):  f A  [ 0 ; 1 ]  If agent A encounters plant P: ► A will eat P  r P ≤ f A  Initially, f = 1 for all agents, i.e. in the beginning, every agent will eat everything ► Interpretation:  Threshold for the amount of redness of a plant an agent accepts, i.e.  If a plant is more red than f A, A deems it poisonous.

DECOI: Social Simulation - August Agents - Eating ► If agent A eats plant P: ► if r P < t : e A  e A + d(nutritious) ► if r P  t : e A  e A - d(poisonous) ► d is the „energy delta“ for nutrition and poison

DECOI: Social Simulation - August Agents - Mating (1) ► Two agents A and B will mate only if  both agents are old enough ► a A  m p and a B  m p (m p : puberty)  and both have enough energy ► e A  m e and e B  m e (m e : energy minimum for mating)  and they are sufficiently close to each other ► m d  distance(A, B) (m d : distance maximum for mating) ► Each simulation step, each female agent will select the male agent with the highest energy satisfying the above conditions for mating.

DECOI: Social Simulation - August Agents - Mating (2) ► Each parent spends a fixed portion of its energy  parents: e A  e A - m e and e B  e B - m e  child: e C  2 * m e ► Inheritance: child randomly chooses a parent‘s gene  f C  f A or f C  f B ► Mutation (slightly changing f c )

DECOI: Social Simulation - August Adaptation ► Purpose: Adapt the filter gene to the global threshold t, so that agents eat only nutritious plants. poisonous nutritious 1 0 t time filter gene f

DECOI: Social Simulation - August Task, Hypothesis & Observation ► The main task was to build and test a theory on an optimal age of puberty  But: is there actually an optimal age of puberty? ► Our preliminary observation from running a few simulations:  Not having a puberty leads to the fastest adaptation  Adaptation slows down with longer puberty ► So we conducted series of simulations  Using a poison threshold of t = 0.8  Testing puberty ages of 0, 5, 10, 20, 40 and 80 steps  Averaging over 5 simulation runs  Using Entorama and NetLogo as environments

DECOI: Social Simulation - August Implementing the Model EntoramaNetLogo Continuous space, fixed boundaries Discrete space for plants (patches), torus structure (wrap- around edges) unlimited space for plants limited space for plants Plant gets eaten by the closest agent Agent eating a plant is chosen randomly from set of present agents at a patch Children are placed randomly in the world Children start at the mother‘s location Starts off with an entire population, distributed randomly over the area Population is faded in during the first steps of the simulation

DECOI: Social Simulation - August Results from Entorama

DECOI: Social Simulation - August Results from NetLogo 5 of 5 died out 1 of 5 died out

DECOI: Social Simulation - August Conclusions ► In this scenario  Evolutionary adaptation works ► Agents evolve so that they distinguish nutritious from poisonous food  Our experiments do not support the existence of an optimal (wrt. adaptation speed) age of puberty ► The shorter the puberty, the faster adaptation ► But short puberty may create the risk of populations dying out ► To be investigated  Artifacts created by the different simulation environments (e.g. populations dying out) ...?