M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre 2015 1 Femtoslicing at SOLEIL M. Labat, M.A. Tordeux, M.E. Couprie, A. Nadji,

Slides:



Advertisements
Similar presentations
Schemes for generation of attosecond pulses in X-ray FELs E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov The potential for the development of XFEL beyond.
Advertisements

M.-A. Tordeux, ESLS XXII, November 2014, GrenobleFEMTO-SLICING project at SOLEIL 1 Femto-Slicing project at SOLEIL M.-A. Tordeux on behalf of the.
1 BROOKHAVEN SCIENCE ASSOCIATES Stephen Kramer, VUV Ring Manager CSR Emission Studies in VUV/IR Ring NSLS.
Short bunches in SPEAR J. Safranek for the SPEAR3 accelerator group November 2, 20101J. Safranek CLS THz Workshop.
1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
1 ILC Bunch compressor Damping ring ILC Summer School August Eun-San Kim KNU.
Linear Collider Bunch Compressors Andy Wolski Lawrence Berkeley National Laboratory USPAS Santa Barbara, June 2003.
Chris Tennant Jefferson Laboratory March 15, 2013 “Workshop to Explore Physics Opportunities with Intense, Polarized Electron Beams up to 300 MeV”
Coherent Synchrotron Radiation for Rotational Spectroscopy : application to Propynal in the GHz range J.Barros P.Roy L.Manceron SOLEIL - AILES.
R. Nagaoka, A. Nadji, M.E. Couprie, O. Marcouillé
Ultrafast XUV Coherent Diffractive Imaging Xunyou GE, CEA Saclay Director : Hamed Merdji.
Design and Performance Expectation of ALPHA accelerator S.Y. Lee, IU 2/26/ Introduction 2. Possible CIS re-build and parameters 3. Issues in the.
A. Zholents, July 28, 2004 Timing Controls Using Enhanced SASE Technique *) A. Zholents or *) towards absolute synchronization between “visible” pump and.
James Welch October 30, FEL Commissioning Plans J. Welch, et. al. FEL Commissioning Plans J. Welch, et. al. Accelerator.
C. Laulhé, S. Ravy, P. Fertey, E. Elkaïm, F. Legrand E. Collet, M. Lorenc, M. Buron-Le Cointe, H. Cailleau Studies of ultrafast structural changes at SOLEIL.
SLAC XFEL Short Bunch Measurement and Timing Workshop 1 Current status of the FERMI project (slides provided by Rene Bakker) Photoinjector laser system.
Matching and Synchrotron Light Diagnostics F.Roncarolo, E.Bravin, S.Burger, A.Goldblatt, G.Trad.
Purity measurement at SOLEIL Nicolas HUBERT # on behalf of the diagnostics group: N. Hubert, L. Cassinari, F. Dohou, M. El Ajjouri, M. Labat, D. Pédeau,
Electromagnetic radiation sources based on relativistic electron and ion beams E.G.Bessonov 1.Introduction 2.Spontaneous and stimulated emission of electromagnetic.
Recent Progress in X-ray Emittance Diagnostics at SPring-8 S. Takano, M. Masaki, and H. Sumitomo * JASRI/SPring-8, Hyogo, Japan SES, Hyogo, Japan *
The impact of undulators in an ERL Jim Clarke ASTeC, STFC Daresbury Laboratory FLS 2012, March 2012.
Low Emittance RF Gun Developments for PAL-XFEL
S. De Santis “Measurement of the Beam Longitudinal Profile in a Storage Ring by Non-Linear Laser Mixing” - BIW 2004 May, 5th Measurement of the Beam Longitudinal.
05/05/2004Cyrille Thomas DIAMOND Storage Ring Optical and X-ray Diagnostics.
First Lasing of the ALICE Free Electron Laser David Dunning On behalf of the ALICE FEL team (Jim Clarke, Neil Thompson, Mark Surman and Andy Smith), and.
Two Longitudinal Space Charge Amplifiers and a Poisson Solver for Periodic Micro Structures Longitudinal Space Charge Amplifier 1: Longitudinal Space Charge.
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
1 BROOKHAVEN SCIENCE ASSOCIATES NSLS II: Accelerator System Overview NSLS II Advisory Committees October 18/19, 2006 Satoshi Ozaki.
Main Bullet #1 Main Bullet #2 Main Bullet #3 Advances in Coherent Synchrotron Radiation at the Canadian Light Source Jack Bergstrom.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
1 BROOKHAVEN SCIENCE ASSOCIATES NSLS-II Overview Satoshi Ozaki Director, Accelerator Systems Division NSLS-II Project March 27, 2007.
ELECTRON MOVING AT CONSTANT VELOCITY
Accelerator Science and Technology Centre Extended ALICE Injector J.W. McKenzie, B.D. Muratori, Y.M. Saveliev STFC Daresbury Laboratory,
M. Hosaka a, M. Katoh b, C. Szwaj c, H. Zen b M. Adachi b, S. Bielawski c, C. Evain c M. Le Parquier c, Y. Takashima a,Y. Tanikawa b Y. Taira b, N. Yamamoto.
Y. Roblin, D. Douglas, F. Hannon, A. Hofler, G. Krafft, C. Tennant EXPERIMENTAL STUDIES OF OPTICS SCHEMES AT CEBAF FOR SUPPRESSION OF COHERENT SYNCHROTRON.
Argonne National Laboratory is managed by The University of Chicago for the U.S. Department of Energy Effects of Impedance in Short Pulse Generation Using.
Canadian Light Source Commissioning Progress CLS Annual Users Meeting –
3 MeV instrumentation commissioning U. Raich, Federico Roncarolo, F. Zocca Linac-4 Beam Coordination Committee CERN, 18.December 2013 Uli Raich.
Lessons Learned From the First Operation of the LCLS for Users Presented by Josef Frisch For the LCLS March 14, 2010.
1 Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF.
J. Corlett. June 16, 2006 A Future Light Source for LBNL Facility Vision and R&D plan John Corlett ALS Scientific Advisory Committee Meeting June 16, 2006.
Low Emittance Rings 2014 Workshop INFN-LNF, 18. September 2014 Low Emittance Studies at 3 GeV at PETRA III Joachim Keil DESY.
Prebunching electron beam and its smearing due to ISR-induced energy diffusion Nikolai Yampolsky Los Alamos National Laboratory Fermilab; February 24,
What did we learn from TTF1 FEL? P. Castro (DESY).
X-band Based FEL proposal
J. C. T. Thangaraj Fermi National Accelerator Laboratory, Batavia, Illinois 1 Experimental studies on an emittance exchange beamline at the A0 photoinjector.
SOLEIL OPERATION AND ON-GOING PROJECTS C. Herbeaux On behalf of SOLEIL Groups C. Herbeaux, November ESLS23, 24-25, 2015, PSI1.
PAL-XFEL Commissioning Plan ver. 1.1, August 2015 PAL-XFEL Beam Dynamics Group.
ESLS Workshop Nov 2015 MAX IV 3 GeV Ring Commissioning Pedro F. Tavares & Åke Andersson, on behalf of the whole MAX IV team.
LSC/CSR Instability Introduction (origin of the instability) CSR/LSC
SOLEIL synchronization system
Diamond Light Source Status and Future Challanges
Group and phase velocity matching in THz IFEL interaction
Timing and synchronization at SPARC
Diagnostics for ThomX Nicolas HUBERT, Marie LABAT, Moussa EL-AJJOURI, D. PEDEAU, Synchrotron SOLEIL Iryna CHAIKOVSKA, N. DELERUE, LAL.
FCC ee Instrumentation
Paul Scherrer Institut
Free Electron Lasers (FEL’s)
F. Villa Laboratori Nazionali di Frascati - LNF On behalf of Sparc_lab
ERL accelerator review. Parameters for a Compton source
Two-bunch self-seeding for narrow-bandwidth hard x-ray FELs
Compact linear accelerator FLUTE: status update
WELCOME TO SOLEIL Amor Nadji On behalf of Synchrotron SOLEIL
Longitudinal-to-transverse mapping and emittance transfer
Longitudinal-to-transverse mapping and emittance transfer
Linac Diagnostics Patrick Krejcik, SLAC April 24, 2002
Transverse coherence and polarization measurement of 131 nm coherent femtosecond pulses from a seeded FEL J. Schwenke, E. Mansten, F. Lindau, N. Cutic,
Introduction to Free Electron Lasers Zhirong Huang
Enhanced Self-Amplified Spontaneous Emission
Electron Optics & Bunch Compression
Presentation transcript:

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre Femtoslicing at SOLEIL M. Labat, M.A. Tordeux, M.E. Couprie, A. Nadji, P. Hollander, P. Prigent, J. Luhning, P. Morin, J.B. Brubach, P. Roy, C. Laulhe, P. Fertey, A. Ciavardini, M. Silly, F. Sirotti.

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre Storage rings : –= Synchrotron Radiation source In insertion devices (undulators) In bending magnets –Typical pulse duration : few tens of ps –Large range of experiments: … Time-resolved experiments Introduction  Need always shorter pulses…

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre Ultra-short pulse generation methods: –Coherent Harmonic Generation [ J.M. Ortega, NIMA250 (1986) ] –Crab cavities [A. Zholents, NIM-A, 425, 385 (1999) ] –Low-alpha mode –Femtoslicing [ A.A. Zholents, Proc. of the PAC’07, (2007) ] Introduction

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre Ultra-short pulse SOLEIL: –Low-alpha mode : >> in operation since 2010: delivery of few ps pulses –Femtoslicing : >> under commissioning since 2014: expected delivery of 100 fs pulses Introduction

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre Femto-slicing concept [1] A.A. Zholents, Proc. of the PAC’07 Conference, Albuquerque, New Mexico, USA, (2007). From R. W. Schoenlein et al., Science 287, 2237(2000). Schematic of a femto-slicing [1] experiment:

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre – Change the electron energy only within a tiny slice 2 – Use dispersive element to separate the slice from the core IR laser E- beam Femto-slicing concept v No energy exchange E v Energy exchange Inside a wiggler magnetic field  bending the e- beam trajectory… under resonance condition: λ laser = λ wiggler E. v ≠ 0 E. v = 0

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre – Change the electron energy only within a tiny slice 2 – Use dispersive element to separate the slice from the core Femto-slicing concept

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre – Change the electron energy only within a tiny slice 2 – Use dispersive element to separate the slice from the core 3 – Use a slit to select the slice and block the core beam Femto-slicing concept

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre I. General layout

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre C06 C07 C08 C09 C10 C05 C03 C04 C02 C01 Linac (100 MeV) Booster Storage ring (2.75 GeV) I. General layout

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre One single laser: CRISTAL beamline laser (5 1 kHz, 30 fs-fwhm, 800 nm) Modulator Wiggler CRISTAL (U20) TEMPO (HU44 + HU80) Medium Section Short Section Medium Section Laser Beam DEIMOS (HU52 + HU65) Medium Section Short Section GALAXIES (U20) I. General layout

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre Modulator: a wiggler used for femto-slicing and as a source for PUMA beamline Modulator Wiggler CRISTAL (U20) TEMPO (HU44 + HU80) Medium Section Short Section Medium Section Laser Beam DEIMOS (HU52 + HU65) Medium Section Short Section GALAXIES (U20) I. General layout

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre Wiggler TypeHybrid out-vacuum Magnetic period164.4 mm Period number20 Magnetic gap14.5 mm – 240 mm Magnetic componentsPoles: VACOFLUX50 (Saturation field: 2.35 T) Magnets: VACODYM 764 TP (magnetization: 1.37T) Max. magnetic field1.81 T Modulator: a wiggler used for femto-slicing and as a source for PUMA beamline I. General layout

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre Modulator Wiggler CRISTAL (U20) TEMPO (HU44 + HU80) Medium Section Short Section Medium Section Laser Beam DEIMOS (HU52 + HU65) Medium Section Short Section GALAXIES (U20) dipole Slice separation using the machine’s horizontal dispersion function I. General layout

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre cor Modulator Wiggler SDC6 SDM8 Laser Beam SDM7 SDC7 SDM6 CRISTAL (U20) TEMPO (HU44 + HU80) DEIMOS (HU52 + HU65) GALAXIES (U20) Beamline entrance slit shifted Core 3 mm Additionnal chicane to reduce the photon emission angle Slice Effective Dispersion D eff (m) S (m) Slice separation using the machine’s horizontal dispersion function I. General layout

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre Modulator Wiggler CRISTAL (U20) TEMPO (HU44 + HU80) Medium Section Short Section Medium Section Laser Beam DEIMOS (HU52 + HU65) Medium Section Short Section GALAXIES (U20) 2 Phase 1 beamlines (CRISTAL, TEMPO) 1 beamline under study (DEIMOS) 2 extra possible beamlines ? (GALAXIES, SEXTANTS) Delivery to several beamlines: 75 fs 140 fs 80 fs 210 fs I. General layout

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre II. Laser transport

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre Laser transport: Over 80 m from hutch to interaction point 22 mirrors (4 under remote control…) ~150 m of beampipes 5 vacuum chambers for mirrors 6 imaging systems 0 : Wiggler DIAG_IR DIAG_101 DIAG_GX01 DIAG_103 ENC104 ENC105 DIAG_GX20 DIAG_GX02 ENC103 ENC102 ENC101 LASER Output AFO 01 ATT 01 MgF 2 DIAG_00 55 m LASER ROOM LENS101 PUMA BL AFO 01 ATT 01 MgF 2 STORAGE RING ROOF STORAGE RING TUNNEL CRISTAL BL EXPERIMENTAL HALL DIAG_001 Wiggler II. Laser transport

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre Laser transport: Focussing with a 9m lens 0 : Wiggler DIAG_IR DIAG_101 DIAG_GX01 DIAG_103 ENC104 ENC105 DIAG_GX20 DIAG_GX02 ENC103 ENC102 ENC101 LASER Output AFO 01 ATT 01 MgF 2 DIAG_00 55 m LASER ROOM LENS101 PUMA BL AFO 01 ATT 01 MgF 2 STORAGE RING ROOF STORAGE RING TUNNEL CRISTAL BL EXPERIMENTAL HALL DIAG_001 Wiggler II. Laser transport wiggler

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre Goal : Alignement of the laser on the electron beam – Temporally (synchronization) – Spatially – Spectrally (fundamental wiggler wavelength = laser wavelength) III. InfraRed diagnostics

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre : Wiggler DIAG_IR MIR 001 WIN 001 FGL 610 LEN 100 MIR 002 Wiggler  In Vacuum Cu Mirror  Saphhire Window  Filters  2.5 m Lens  R max Mirror 900 mm 300 mm STORAGE RING TUNNEL Laser + Synchrotron Radiation extraction: III. InfraRed diagnostics

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre : Wiggler DIAG_IR MIR 001 WIN 001 FGL 610 LEN 100 MIR 002 Spatial overlap: Optics + CCD for imaging in the wiggler  Basler Spectral overlap: Spectrometer  Ocean Optics USB2000 Temporal overlap: Fast photodiode  FPD 310-FV from Menlo Wiggler  In Vacuum Cu Mirror  Saphhire Window  Filters  2.5 m Lens  R max Mirror 900 mm 300 mm STORAGE RING TUNNEL IR detectors: III. InfraRed diagnostics

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre Wiggler entry 1 pixel on the CCD ≡ 20 µm in the transverse plane of the wiggler Wiggler middle Wiggler exit SR Laser III. InfraRed diagnostics Spatial alignment of the laser on the SR:

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre 2015 III. InfraRed diagnostics Synchronization of the laser on the e- beam: Measure arrival time of the SR on the photodiode Measure arrival time of the laser Adjust the laser delay to equal the SR’s Final resolution : +/- 10 ps 24 SR Laser 1 ns

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre 2015 III. InfraRed diagnostics Spectral overlap: No straight forward measurement (presence of filters on the IR diagnostics board) 25

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre 2015 Experiment / Simulation MeasuredSimulated MeasuredSimulated

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre 2015 III. InfraRed diagnostics Spectral overlap: No straight forward measurement (presence of filters on the IR diagnostics board) Measure the laser spectrum in the laser hutch Define the central wavelength Adjust the wiggler gap to the resonant wavelength 27 Wiggler gap [mm] Lambda Res [nm] from magnetic measurements Laser

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre IV. THz diagnostics Goal : Check that there is interaction Optimize the interaction

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre IV. THz diagnostics Principle : Interaction creates a hole

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre IV. THz diagnostics Principle : Interaction creates a hole Sub-mm hole (~ps) gives coherent THz radiation

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre 2015 Wiggler Laser Time (ps) Time (ps) 1010 IV. THz diagnostics Principle : Good interaction = “Big hole” “Big hole” = Big THz signal

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre 2015 Wiggler Laser THz pulses AILES beamline Time (ps) Time (ps) 1010 IV. THz diagnostics Setup : High sensitivity measurements: Bolometer  IR Labs 1.7 µs, oscillo Lecroy 1GHz Fast measurements (turn by turn): THz diode  Virginia Diode Virginia 1 ns  ACST 1 ns

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre V. THz measurements Beginning of the commissioning: January 2014 First THz signal: September 2014…

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre 2015 ~ 60 mV ~ 600 mV 21/09/2015 V. THz measurements Bolometer typical signal :

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre 2015 ~ 60 mV ~ 600 mV 21/09/2015 V. THz measurements Diode typical signal :

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre 2015 THz intensity vs beam current

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre 2015 P_laser = 1.7 W ; DT=33 fs ; Tirage = 4.5 mm ; gap=16.7 mm THz intensity vs beam current  For I > 8 mA : microbunching instability ->> CSR bursts I = 8 mA (blue) I = 9 mA (red)

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre 2015 P_laser = 1.7 W ; DT=33 fs ; Tirage = 4.5 mm ; gap=16.7 mm  THz signal still « visible » up to 15 mA but << to CSR bursts I=15 mA THz intensity vs beam current

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre THz intensity vs wiggler gap

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre First results : THz intensity vs delay laser / e- Bolometer signal vs synchro. P laser = W. Pulse laser duration = 25 fs-fwhm. Focussing = 12.5 mm. Wiggler gap = 16.7 mm. I=4 mA.

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre 2015 Laser stays in its initial position Electron beam displaced parallel to the reference orbit using bumps Optimum at µm / Sensitivity : +/- 600 µm ! THz intensity vs e- beam position in SDM6 (H)

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre 2015 Optimum at µm / Sensitivity : +/- 900 µm THz intensity vs e- beam position in SDM6 (V) Laser stays in its initial position Electron beam displaced parallel to the reference orbit using bumps

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre 2015 THz intensity vs MIR104 setting : MIR104 = mirror on the tunnel roof, just before the shielded box MIR104 = last motorized mirror on the transport ->> used for alignement Result : we loose the THz signal when displacing the laser spot on CAM.001 by : +/- 15 pixels in V +/- 30 pixels in H High sensitivity to the laser transport ! THz intensity vs laser transport

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre 2015 THz intensity vs laser power

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre 2015 THz intensity vs pulse duration Chirp < 0 Chirp > 0  Optimum 500 fs but very disymetric response vs chirp…

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre 2015 Chirp < 0 Chirp > 0 First results : THz intensity vs pulse duration  Optimum 500 fs but symetric response vs chirp…

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre 2015 THz signal simulation  Optimum 500 fs but symetric response vs chirp… ????

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre 2015 P_laser = 1.7 W ; DT=33/500 fs ; Tirage = 4.5 mm ; gap=16.7 mm Basse résolution THz spectrum on AILES beamline

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre 2015 THz spectrum on AILES beamline P_laser = 1.7 W ; DT=33/500 fs ; Tirage = 4.5 mm ; gap=16.7 mm FT of the electron bunch longitudinal profile

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre 2015 Next steps : ->> Reproduce experiment with simulations ->> Observe fs CRISTAL ->> Deliver to other beamlines Conclusion

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre Sources and Accelerators Division Head of the project (Accelerator part): A. Nadji Deputy : M.-E. Couprie Commissioning coordinators: M. Labat and M.-A. Tordeux Accelerator physics: M.-A. Tordeux, P. Brunelle, L. S. Nadolski, A. Loulergue Diagnostics: M. Labat, L. Cassinari, F. Dohou, D. Pedeau, J.-P. Ricaud Insertion Devices & Chicane: O. Marcouillé, T. El Ajjouri, H. Abualrobf, F. Marteau, J. Vétéran, M.-E. Couprie. Steering committee: M.-E. Couprie, J. Luning, P. Morin, A. Nadji, P. Prigent Technical Division Vacuum: C. Herbeaux, N. Béchu Mechanical Engineering: J.-L. Marlats, D. Zerbib, S. Génix, K. Tavakoli, A. Mary C. De Oliveira, C. Créoff, S. Bonnin Survey and Alignement: A. Lestrade, M. Ros Infrastructure: P. Eymard, P. Goy General Division Radiation safety: J.-B. Pruvost, M. Hafsi, F. Ribaud Laser Safety: L. Germain, J.P. Laurent Methods: H. Rozelot Experiences Division Head of the project (Experience part): J. Luning Deputy: P. Prigent Commissioning coordinators: P. Hollander, CRISTAL, TEMPO Instrumentation & Coordination: P. Hollander, P. Prigent Detectors : S. Hustache Optics: F. Polack, T. Moreno CRISTAL Beamline: C. Laulhé, S. Ravy TEMPO Beamline: M. Silly, F. Sirotti Informatics Division (ECA)S. Zhang, J. Bisou, Y.M. Abiven (ISI)E. Moge, P. Gattoni (ISG)J. Guyot (ICA)O. Roux, S. Le Femto-slicing project team

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre ParameterUnitValue EnergyGeV Revolution periodµs 1.18 Nb of bunches (max)- 416 Energy spread Longitudinal Damping time Transverse Damping timems Horizontal emittancenm.rad 3.9 Controlled Coupling% 1 Bunch lengthps-rms 5 mA Beam life timeh 430 mA SOLEIL main parameters: SOLEIL: Setup

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre SOLEIL main parameters: ParameterUnitValue Laser wavelengthnm 800 Laser pulse energymJ 1 kHz Laser pulse durationfs-fwhm 30 – 1000 Laser quality (M²)- < 1.5 Laser Rayleigh lengthm 0.6 – 0.7 Laser repetition ratekHz 1 Wiggler periodmm Resonant wavelength nm ~ 785 Current / bunchmA 10 Filling pattern- 1-8 bunches, exotic hybrid SOLEIL: parameters

M. Labat, SOLEIL Journées Accélérateurs, Roscoff, Octobre THz intensity vs laser focussing Bolometer signal vs laser focussing. P laser = W. Pulse laser duration = 25 fs-fwhm. Gap wiggler = 16.7 mm. I < 4 mA.