1 Lecture 15: Interconnection Routing Topics: deadlock, flow control.

Slides:



Advertisements
Similar presentations
What is Flow Control ? Flow Control determines how a network resources, such as channel bandwidth, buffer capacity and control state are allocated to packet.
Advertisements

ECE 1749H: Interconnection Networks for Parallel Computer Architectures: Flow Control Prof. Natalie Enright Jerger.
Miguel Gorgues, Dong Xiang, Jose Flich, Zhigang Yu and Jose Duato Uni. Politecnica de Valencia, Spain School of Software, Tsinghua University, China, Achieving.
1 Lecture 17: On-Chip Networks Today: background wrap-up and innovations.
1 Lecture 12: Interconnection Networks Topics: dimension/arity, routing, deadlock, flow control.
1 Lecture 15: PCM, Networks Today: PCM wrap-up, projects discussion, on-chip networks background.
1 Lecture 23: Interconnection Networks Paper: Express Virtual Channels: Towards the Ideal Interconnection Fabric, ISCA’07, Princeton.
CSE 291-a Interconnection Networks Lecture 12: Deadlock Avoidance (Cont’d) Router February 28, 2007 Prof. Chung-Kuan Cheng CSE Dept, UC San Diego Winter.
1 Lecture 16: On-Chip Networks Today: on-chip networks background.
CS 258 Parallel Computer Architecture Lecture 5 Routing February 6, 2008 Prof John D. Kubiatowicz
1 Lecture 21: Router Design Papers: Power-Driven Design of Router Microarchitectures in On-Chip Networks, MICRO’03, Princeton A Gracefully Degrading and.
1 Lecture 13: Interconnection Networks Topics: flow control, router pipelines, case studies.
1 Lecture 25: Interconnection Networks Topics: flow control, router microarchitecture Final exam:  Dec 4 th 9am – 10:40am  ~15-20% on pre-midterm  post-midterm:
Predictive Load Balancing Reconfigurable Computing Group.
1 Lecture 24: Interconnection Networks Topics: topologies, routing, deadlocks, flow control Final exam reminders:  Plan well – attempt every question.
CSE 291-a Interconnection Networks Lecture 10: Flow Control February 21, 2007 Prof. Chung-Kuan Cheng CSE Dept, UC San Diego Winter 2007 Transcribed by.
1 Lecture 25: Interconnection Networks, Disks Topics: flow control, router microarchitecture, RAID.
Issues in System-Level Direct Networks Jason D. Bakos.
1 Lecture 24: Interconnection Networks Topics: topologies, routing, deadlocks, flow control.
1 Lecture 26: Interconnection Networks Topics: flow control, router microarchitecture.
1 Lecture 13: Interconnection Networks Topics: lots of background, recent innovations for power and performance.
1 Lecture 25: Interconnection Networks Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix E) Review session,
Performance and Power Efficient On-Chip Communication Using Adaptive Virtual Point-to-Point Connections M. Modarressi, H. Sarbazi-Azad, and A. Tavakkol.
Switching, routing, and flow control in interconnection networks.
29-Aug-154/598N: Computer Networks Switching and Forwarding Outline –Store-and-Forward Switches.
1 Lecture 23: Interconnection Networks Topics: Router microarchitecture, topologies Final exam next Tuesday: same rules as the first midterm Next semester:
1 The Turn Model for Adaptive Routing. 2 Summary Introduction to Direct Networks. Deadlocks in Wormhole Routing. System Model. Partially Adaptive Routing.
On-Chip Networks and Testing
High-Performance Networks for Dataflow Architectures Pravin Bhat Andrew Putnam.
Networks-on-Chips (NoCs) Basics
Author : Jing Lin, Xiaola Lin, Liang Tang Publish Journal of parallel and Distributed Computing MAKING-A-STOP: A NEW BUFFERLESS ROUTING ALGORITHM FOR ON-CHIP.
Computer Architecture Distributed Memory MIMD Architectures Ola Flygt Växjö University
Deadlock CEG 4131 Computer Architecture III Miodrag Bolic.
Sami Al-wakeel 1 Data Transmission and Computer Networks The Switching Networks.
ECE669 L21: Routing April 15, 2004 ECE 669 Parallel Computer Architecture Lecture 21 Routing.
1 Lecture 26: Networks, Storage Topics: router microarchitecture, disks, RAID (Appendix D) Final exam: Monday 30 th Apr 10:30-12:30 Same rules as the midterm.
© Sudhakar Yalamanchili, Georgia Institute of Technology (except as indicated) Switch Microarchitecture Basics.
BZUPAGES.COM Presentation On SWITCHING TECHNIQUE Presented To; Sir Taimoor Presented By; Beenish Jahangir 07_04 Uzma Noreen 07_08 Tayyaba Jahangir 07_33.
Lecture 16: Router Design
WAN Transmission Media
Networks: Routing, Deadlock, Flow Control, Switch Design, Case Studies Alvin R. Lebeck CPS 220.
1 Lecture 15: NoC Innovations Today: power and performance innovations for NoCs.
1 Lecture 22: Router Design Papers: Power-Driven Design of Router Microarchitectures in On-Chip Networks, MICRO’03, Princeton A Gracefully Degrading and.
Virtual-Channel Flow Control William J. Dally
1 Lecture 24: Interconnection Networks Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix F)
1 Switching and Forwarding Sections Connecting More Than Two Hosts Multi-access link: Ethernet, wireless –Single physical link, shared by multiple.
1 Lecture 14: Interconnection Networks Topics: dimension vs. arity, deadlock.
Flow Control Ben Abdallah Abderazek The University of Aizu
1 Lecture 29: Interconnection Networks Papers: Express Virtual Channels: Towards the Ideal Interconnection Fabric, ISCA’07, Princeton Interconnect Design.
1 Lecture 22: Interconnection Networks Topics: Routing, deadlock, flow control, virtual channels.
The network-on-chip protocol
Lecture 23: Interconnection Networks
Lecture 14: Large Cache Design III
Interconnection Networks: Flow Control
Lecture 23: Router Design
Lecture 16: On-Chip Networks
Lecture 17: NoC Innovations
Mechanics of Flow Control
Lecture 14: Interconnection Networks
Lecture: Transactional Memory, Networks
Virtual-Channel Flow Control
Lecture: Interconnection Networks
CEG 4131 Computer Architecture III Miodrag Bolic
EE 122: Lecture 7 Ion Stoica September 18, 2001.
Lecture: Networks Topics: TM wrap-up, networks.
Lecture: Interconnection Networks
CS 6290 Many-core & Interconnect
Lecture 25: Interconnection Networks
EE382C Lecture 9 Deadlock 4/26/11 EE 382C - S11- Lecture 9.
Presentation transcript:

1 Lecture 15: Interconnection Routing Topics: deadlock, flow control

2 Deadlock Deadlock happens when there is a cycle of resource dependencies – a process holds on to a resource (A) and attempts to acquire another resource (B) – A is not relinquished until B is acquired

3 Deadlock Example Packets of message 1 Packets of message 2 Packets of message 3 Packets of message 4 4-way switch Output ports Each message is attempting to make a left turn – it must acquire an output port, while still holding on to a series of input and output ports Input ports

4 Deadlock-Free Proofs Number edges and show that all routes will traverse edges in increasing (or decreasing) order – therefore, it will be impossible to have cyclic dependencies Example: k-ary 2-d array with dimension routing: first route along x-dimension, then along y

5 Breaking Deadlock I The earlier proof does not apply to tori because of wraparound edges Partition resources across multiple virtual channels If a wraparound edge must be used in a torus, travel on virtual channel 1, else travel on virtual channel 0

6 Breaking Deadlock II Consider the eight possible turns in a 2-d array (note that turns lead to cycles) By preventing just two turns, cycles can be eliminated Dimension-order routing disallows four turns Helps avoid deadlock even in adaptive routing West-FirstNorth-LastNegative-FirstCan allow deadlocks

7 Packets/Flits A message is broken into multiple packets (each packet has header information that allows the receiver to re-construct the original message) A packet may itself be broken into flits – flits do not contain additional headers Two packets can follow different paths to the destination Flits are always ordered and follow the same path Such an architecture allows the use of a large packet size (low header overhead) and yet allows fine-grained resource allocation on a per-flit basis

8 Flow Control The routing of a message requires allocation of various resources: the channel (or link), buffers, control state Bufferless: flits are dropped if there is contention for a link, NACKs are sent back, and the original sender has to re-transmit the packet Circuit switching: a request is first sent to reserve the channels, the request may be held at an intermediate router until the channel is available (hence, not truly bufferless), ACKs are sent back, and subsequent packets/flits are routed with little effort (good for bulk transfers)

9 Buffered Flow Control A buffer between two channels decouples the resource allocation for each channel – buffer storage is not as precious a resource as the channel (perhaps, not so true for on-chip networks) Packet-buffer flow control: channels and buffers are allocated per packet  Store-and-forward  Cut-through Time-Space diagrams HBBBT HBBBT HBBBT Cycle Channel HBBBT HBBBT HBBBT

10 Flit-Buffer Flow Control (Wormhole) Wormhole Flow Control: just like cut-through, but with buffers allocated per flit (not channel) A head flit must acquire three resources at the next switch before being forwarded:  channel control state (virtual channel, one per input port)  one flit buffer  one flit of channel bandwidth The other flits adopt the same virtual channel as the head and only compete for the buffer and physical channel  Consumes much less buffer space than cut-through routing – does not improve channel utilization as another packet cannot cut in (only one VC per input port)

11 Virtual Channel Flow Control Each switch has multiple virtual channels per phys. channel Each virtual channel keeps track of the output channel assigned to the head, and pointers to buffered packets A head flit must allocate the same three resources in the next switch before being forwarded By having multiple virtual channels per physical channel, two different packets are allowed to utilize the channel and not waste the resource when one packet is idle

12 Example Wormhole: Virtual channel: A B B A is going from Node-1 to Node-4; B is going from Node-0 to Node-5 Node-1 Node-0 Node-5 (blocked, no free VCs/buffers) Node-2Node-3Node-4 idle A B A Node-1 Node-0 Node-5 (blocked, no free VCs/buffers) Node-2Node-3Node-4 B A Traffic Analogy: B is trying to make a left turn; A is trying to go straight; there is no left-only lane with wormhole, but there is one with VC

13 Buffer Management Credit-based: keep track of the number of free buffers in the downstream node; the downstream node sends back signals to increment the count when a buffer is freed; need enough buffers to hide the round-trip latency On/Off: the upstream node sends back a signal when its buffers are close to being full – reduces upstream signaling and counters, but can waste buffer space

14 Deadlock Avoidance with VCs VCs provide another way to number the links such that a route always uses ascending link numbers Alternatively, use West-first routing on the 1 st plane and cross over to the 2 nd plane in case you need to go West again (the 2 nd plane uses North-last, for example)

15 Projects Deadlines:  3/2: decide on teams, talk to me about initial idea  3/9: rd related work, talk to me about abstract/simulator  3/16: understand simulator aspects, write 1-page pitch (articulate idea, expected benefits, compare against related work, list of experiments/simulator changes)  Start experiments on simulator Evaluation:  Submit written reports (April end)  Peer reviews of reports (mid May)  My evaluation: 20%, Peer evaluation: 20%, Quality of reviews: 10%

16 Title Bullet