Structural Dynamics & Vibration Control Lab. 1 대용량 20 톤 MR 유체 감쇠기의 새로운 동적 모델 정형조, 한국과학기술원 건설환경공학과 최강민, 한국과학기술원 건설환경공학과 Guangqiang Yang, University of Notre.

Slides:



Advertisements
Similar presentations
Dynamic Performance Class 4.
Advertisements

Chapter 4: Basic Properties of Feedback
Silly Putty Opening Question
MR 유체 감쇠기를 이용한 사장교의 지진응답 제어 기법
Modelling, Characterisation and Development of New Magnetorheological Materials With Enhanced Vibration Control Performance K. Sapouna, Supervisors: Y.P.
slide 1 Measuring Natural Frequency and Non-Linear Damping on Oscillating Micro Plates ICEM 13 Alexandroupolis, Greece July 1-5, 2007 Sandia is a multiprogram.
Haptic Display Device John MacDuffie Woodburn Michael Vitale
Exponential Tracking Control of Hydraulic Proportional Directional Valve and Cylinder via Integrator Backstepping J. Chen†, W. E. Dixon‡, J. R. Wagner†,
Nazgol Haghighat Supervisor: Prof. Dr. Ir. Daniel J. Rixen
Passive, Semi-Active and Active Suspension System
Benoit BOLZON Nanobeam 2005 – Kyoto Active mechanical stabilisation LAViSta Laboratories in Annecy working on Vibration Stabilisation Catherine ADLOFF.
Scale physical model Mathematical model Numerical model How to Model Physical Systems
Quake Summit 2012 July 9-12, 2012, Boston
Model reduction of large-scale dynamical (mechanical) systems A. Antoulas, D. Sorensen, K. Gallivan, P. Van Dooren, A. Grama, C. Hoffmann, A. Sameh Purdue.
Comparative Study on Performances of Various Semiactive Control Algorithms for Stay Cables 2004 년도 강구조공학회 학술발표대회 2004 년 6 월 5 일 장지은, 한국과학기술원 건설 및 환경공학과.
Experimental determination of motor model parameters ETEC6419.
CABLE-STAYED BRIDGE SEISMIC ANALYSIS USING ARTIFICIAL ACCELEROGRAMS
Structural Dynamics & Vibration Control Lab 1 December Department of Civil & Environmental Engineering K orea A dvanced I nstitute of S cience.
정형조, 세종대학교 토목환경공학과 조교수 최강민, 한국과학기술원 건설 및 환경공학과 박사과정 지한록, 한국과학기술원 건설 및 환경공학과 석사과정 고만기, 공주대학교 토목환경공학과 교수 이인원, 한국과학기술원 건설 및 환경공학과 교수 2005 년 한국강구조학회 학술발표회.
조상원 * : 박사과정, 한국과학기술원 건설환경공학과 조상원 * : 박사과정, 한국과학기술원 건설환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 박선규 : 교수, 성균관대학교 토목공학과 박선규 : 교수, 성균관대학교 토목공학과.
Investigation of Uncertainties Associated with Actuation Modeling Error and Sensor Noise on Real Time Hybrid Simulation Performance Amin Maghareh, Shirley.
Sang-Won Cho* : Ph.D. Student, KAIST Sang-Won Cho* : Ph.D. Student, KAIST Dong-Hyawn Kim: Senior Researcher, KORDI Dong-Hyawn Kim: Senior Researcher, KORDI.
1 지진하중을 받는 구조물의 MR 댐퍼의 동특성을 고려한 반능동 신경망제어 Heon-Jae Lee 1), Hyung-Jo Jung 2), Ju-Won Oh 3), In-Won Lee 4) 1) Graduate Student, Dept. of Civil and Environmental.
System Control Theory Lab
Self-Sensing Active Magnetic Dampers for Vibration Control
CLIC MDI Working Group Vibration attenuation via passive pre- isolation of the FF quads A. Gaddi, H. Gerwig, A. Hervé, N. Siegrist, F. Ramos.
Structural Dynamics & Vibration Control Lab. 1 Kang-Min Choi, Ph.D. Candidate, KAIST, Korea Jung-Hyun Hong, Graduate Student, KAIST, Korea Ji-Seong Jo,
* Dong-Hyawn Kim: Graduate Student, KAIST Ju-Won Oh: Professor, Hannam University Ju-Won Oh: Professor, Hannam University In-Won Lee: Professor, KAIST.
Mass spring damper system Tutorial Test 1. Derive the differential equation and find the transfer function for the following mass spring damper system.
April Second Order Systems m Spring force ky F(t) (proportional to velocity) (proportional to displacement)
Hyung-Jo Jung Sejong University, Korea Hyung-Jo Jung Sejong University, Korea Kang-Min Choi Korea Advanced Inst. of Science and Tech. Kang-Min Choi Korea.
케이블 진동 감쇠를 위한 반능동 제어 장치 성능의 실험적 평가
Session 6 - Sensor Modelling
Computational Structural Engineering Institute Autumn Conference 2002 Oct , 2002 VIBRATION CONTROL OF BRIDGE FOR SERVICEABILITY Jun-Sik Ha 1),
Structural Dynamics & Vibration Control Lab., KAIST 1 Structural Vibration Control Using Semiactive Tuned Mass Damper Han-Rok Ji, Graduate Student, KAIST,
Structural Dynamics & Vibration Control Lab 1 Smart Passive System based on MR Damper for Benchmark Structural Control Problem for a Seismically Excited.
지진 하중을 받는 구조물의 능동 모달 퍼지 제어시스템
CONTENTS Introduction Semi-Active Control Proposed Control Algorithm
조상원 * : 박사과정, 한국과학기술원 건설환경공학과 조상원 * : 박사과정, 한국과학기술원 건설환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 이종헌 : 교수, 경일대학교 토목공학과 이종헌 : 교수, 경일대학교 토목공학과.
Advanced Science and Technology Letters Vol.32 (Architecture and Civil Engineering 2013), pp Development.
1 Structural Dynamics & Vibration Control Lab., KAIST 사장교의 면진 성능 향상을 위한 납고무 받침의 설계 기준 제안 Guidelines of Designing L.R.B. for a Cable-Stayed Bridge to Reduce.
MR 댐퍼를 기반으로 하는 스마트 수동제어 시스템 대한토목학회 정기 학술대회 2004 년 10 월 21 일 조상원 : KAIST 건설환경공학과, 박사 이헌재 : KAIST 건설환경공학과, 박사과정 오주원 : 한남대학교 토목환경공학과, 교수 이인원 : KAIST 건설환경공학과,
* 김동현 : KAIST 토목공학과, 박사후연구원 오주원 : 한남대학교 토목환경공학과, 교수 오주원 : 한남대학교 토목환경공학과, 교수 이규원 : 전북대학교 토목환경공학과, 교수 이규원 : 전북대학교 토목환경공학과, 교수 이인원 : KAIST 토목공학과, 교수 이인원 :
Model of Reluctance Synchronous Motor
System Models.
Speaker : Yunjeong Son Master’s Course, Hongik University
S7-1 SECTION 7 FREQUENCY RESPONSE ANALYSIS. S7-2 INTRODUCTION TO FREQUENCY RESPONSE ANALYSIS n Frequency response analysis is a method used to compute.
Passive isolation: Pre-isolation for FF quads A. Gaddi, H. Gerwig, A. Hervé, N. Siegrist, F. Ramos.
Structural Dynamics & Vibration Control Lab. 1 모달 퍼지 이론을 이용한 지진하중을 받는 구조물의 능동제어 최강민, 한국과학기술원 건설 및 환경공학과 조상원, 한국과학기술원 건설 및 환경공학과 오주원, 한남대학교 토목공학과 이인원, 한국과학기술원.
모달변위를 이용한 지진하중을 받는 구조물의 능동 신경망제어 2004 년도 한국전산구조공학회 춘계 학술발표회 국민대학교 2004 년 4 월 10 일 이헌재, 한국과학기술원 건설및환경공학과 박사과정 정형조, 세종대학교 토목환경공학과 조교수 이종헌, 경일대학교 토목공학과 교수.
Measurements in Fluid Mechanics 058:180 (ME:5180) Time & Location: 2:30P - 3:20P MWF 3315 SC Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor: Lichuan.
 - 합성법을 이용한 사장교의 지진응답 제어 년도 한국전산구조공학회 가을 학술발표회 박규식, 한국과학기술원 건설 및 환경공학과 박사후과정 정형조, 세종대학교 토목환경공학과 조교수 윤우현, 경원대학교 산업환경대학원 부교수 이인원, 한국과학기술원.
Smart Passive System Based on MR Damper JSSI 10 th Anniversary Symposium on Performance of Response Controlled Buildings Nov , Yokohama Japan.
Systems Dynamics Dr. Mohammad Kilani Class 1 Introduction.
Sang-Won Cho* : Ph.D. Candidate, KAIST Sang-Won Cho* : Ph.D. Candidate, KAIST Byoung-Wan : Ph.D. Candidate, KAIST Byoung-Wan : Ph.D. Candidate, KAIST Hyung-Jo.
Optimalization of control algorithm of MR damper Zbyněk Strecker Institute of Machine and Industrial Design Faculty of Mechanical Engineering BUT
Vibration issues at Linear Colliders:
년도 한국지진공학회 춘계학술발표회 Hybrid Control Strategy for Seismic Protection of Benchmark Cable-Stayed Bridges 박규식, 한국과학기술원 토목공학과 박사과정 정형조, 한국과학기술원.
Comparison of 200kN Magneto-Rheological Dampers for Determination of Parameters by Probabilistic Means Christopher Amaro, Priscila Silva, Adam Davies,
Modal Control for Seismically Excited Structures using MR Damper
LOCATION AND IDENTIFICATION OF DAMPING PARAMETERS
Chapter 15 Oscillations.
LECTURE #5 System Modeling& Responses
ME321 Kinematics and Dynamics of Machines
ME321 Kinematics and Dynamics of Machines
KAIST-Kyoto Univ. Joint Seminar
반능동 MR 유체 감쇠기를 이용한 지진하중을 받는 구조물의 신경망제어 이헌재, 한국과학기술원 건설환경공학과 석사과정
Implementation of Modal Control for
Vibration based structural damage detection for structural health monitoring of civil infrastructure system.
A Survey on State Feedback AMD Control
Presentation transcript:

Structural Dynamics & Vibration Control Lab. 1 대용량 20 톤 MR 유체 감쇠기의 새로운 동적 모델 정형조, 한국과학기술원 건설환경공학과 최강민, 한국과학기술원 건설환경공학과 Guangqiang Yang, University of Notre Dame, USA Billie F. Spencer, Jr., University of Notre Dame, USA 이인원, 한국과학기술원 건설환경공학과 한국전산구조공학회 춘계 학술발표회 서울대학교, 서울 2002 년 4 월 13 일

Structural Dynamics & Vibration Control Lab. 2 Outline MR Damper Experimental Setup Experimental Results Quasi-Static Modeling of MR Dampers Dynamic Modeling of MR Damper System Conclusions

Structural Dynamics & Vibration Control Lab. 3 Introduction Although, MR fluids were discovered in the late of 1940s, commercial applications were not developed until the Lord Corporation pioneered small-scale devices for vehicular applications in the 1990s. Partnering with the Lord Corporation in the mid 90s, Univ. of Notre Dame (Prof. Spencer) sought to develop large-scale devices for civil infrastructural applications.

Structural Dynamics & Vibration Control Lab. 4 Magnetorheological Fluid Damper F Magnetic Choke MR Fluid MR Damper Experimental Setup

Structural Dynamics & Vibration Control Lab. 5 Prototype 20-Ton MR Fluid Damper Thermal Expansion Accumulator LORD Rheonetic TM Seismic Damper MR-9000 MR Fluid 3-Stage Piston Diameter: 20 cm Stroke: 16 cm Power: < 50 watts, 22 volts

Structural Dynamics & Vibration Control Lab. 6 LORD Rheonetic TM Seismic Damper MR-9000 Diameter: 20 cm Stroke: 16 cm Power: < 50 watts, 22 volts Prototype 20-Ton MR Fluid Damper

Structural Dynamics & Vibration Control Lab. 7 Experimental Setup (Yang 2001)

Structural Dynamics & Vibration Control Lab. 8 Performance Testing Experimental Results (Yang 2001)

Structural Dynamics & Vibration Control Lab. 9 Force-Displacement Tests under Triangular Excitation Velocity: 6 cm/sec

Structural Dynamics & Vibration Control Lab. 10 Damper Force-Displacement and Force-Velocity Relationships under Sinusoidal Excitation Displacement Excitation: 1 inch, 0.5 Hz

Structural Dynamics & Vibration Control Lab. 11 Frequency-Dependent Tests 1 inch displacement excitation 2 A input current

Structural Dynamics & Vibration Control Lab. 12 Constant Peak Velocity Tests Displacement excitation with peak velocity of 8 cm/s and input current of 2 A

Structural Dynamics & Vibration Control Lab. 13 Quasi-Static Models for MR Dampers* Insufficient to describe the MR damper behavior under dynamic loading. * Yang 2001

Structural Dynamics & Vibration Control Lab. 14 Dynamic model of the current driver. –Current driver has shown to be more effective than the common voltage-driven power supply in reducing MR damper response time. Dynamic model of the MR damper itself. Dynamic Model of MR Damper System The dynamic model of the MR damper system is necessary for simulation of damper behavior and structural vibration control simulation with MR dampers.

Structural Dynamics & Vibration Control Lab. 15 Dynamic Model of Current Driver Differential equation between i com and i is

Structural Dynamics & Vibration Control Lab. 16 Dynamic Model of Current Driver Identified transfer function between i com and i is

Structural Dynamics & Vibration Control Lab. 17 Experimental Verification

Structural Dynamics & Vibration Control Lab. 18 Experimental Verification

Structural Dynamics & Vibration Control Lab. 19 MR Damper Response Analysis Displacement Lag Force Overshoot Force Roll-Off

Structural Dynamics & Vibration Control Lab. 20 MR Dampers Response Analysis Force Roll-Off Additional Loops Force Overshoot

Structural Dynamics & Vibration Control Lab. 21 Proposed Dynamic Model of MR Dampers

Structural Dynamics & Vibration Control Lab. 22 Proposed Dynamic Model

Structural Dynamics & Vibration Control Lab. 23 Damper Response with Random Displacement Excitation and Constant Current Damper Response with an Input Current of 2 A

Structural Dynamics & Vibration Control Lab. 24 Generalization for Fluctuating Current Six parameters are assumed to vary with the input current, which are , a 1, a 2, m, n, f 0. A first-order low-pass filter is utilized to accommodate the dynamics involved in the MR fluid reaching rheological equilibrium

Structural Dynamics & Vibration Control Lab. 25 Experimental Verification DisplacementExcitation Input Current

Structural Dynamics & Vibration Control Lab. 26 Damper Response Experimental Verification

Structural Dynamics & Vibration Control Lab. 27 Conclusions Magnetorheological fluid dampers are one of the most promising smart damping technologies. Full-scale MR dampers can be effectively realized. Proposed dynamic model of MR damper systems is effective in describing the nonlinear MR damper behavior under dynamic loading.