1 Antimatter - Rolf Landua Lecture Plan I.History of Antimatter II.Antimatter and the Universe III.Production and trapping of antiparticles IV.Precision.

Slides:



Advertisements
Similar presentations
M. Jones, A. Boston, M. Chartier, B. McGuirk, P. Nolan, R.D. Page, P. Pusa, D. Seddon, J. Thornhill, D. Wells and the ALPHA collaboration Department of.
Advertisements

Antimatter: Past, Present & Future Presentation By Paramita Barai In Course Phys 6410: Introductory Nuclear and Particle Physics Instructor: Dr. Xiaochun.
When an nucleus releases the transition energy Q (say 14.4 keV) in a  -decay, the  does not carry the full 14.4 keV. Conservation of momentum requires.
Alpha decay parent nucleus daughter nucleus Momentum conservation decides how the energy is distributed. r E 30 MeV 5 MeV.
Prentice Hall © 2003Chapter 21 Chapter 21 Nuclear Chemistry CHEMISTRY The Central Science 9th Edition.
Neutral Particles. Neutrons Neutrons are like neutral protons. –Mass is 1% larger –Interacts strongly Neutral charge complicates detection Neutron lifetime.
Matteo Negrini ISMD-2003, Krakow, September 5-11, 2003 Charmonium Production with Antiproton - Gas Jet Interactions at FNAL Matteo Negrini University of.
Frictional Cooling MC Collaboration Meeting June 11-12/2003 Raphael Galea.
Antihydrogen Spectroscopy David Christian Fermilab November 17, 2007.
Chapter 4 Radioactivity and Medicine A CT scan (computed tomography) of the brain using X-ray beams.
Homework # (20 points) 8-25 (20 points) 8-32 (30 points)
The 511 keV Annihilation Emission From The Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/1/2.
September 23, 2008 Erice Cem Güçlü İstanbul Technical University Physics Department Production of electron-positron pairs by nuclear dissociation.
6. Atomic and Nuclear Physics Chapter 6.6 Nuclear Physics.
Radiation therapy is based on the exposure of malign tumor cells to significant but well localized doses of radiation to destroy the tumor cells. The.
DMI 261 Radiation Biology AndProtection. Unit 2 RADIATION Electromagnetic Spectrum –The frequency range of electromagnetic radiation and the photon wavelength.
Chapter 31 Nuclear Energy; Effects and Uses of Radiation.
The Production of Cold Antihydrogen w. A Brief History of Antimatter In 1928, Paul Dirac proposes antimatter with his work in relativistic quantum mechanics.
What are we made of ? Neutrinos Building a Particle Collider The ring is 27km round and on average 100m underground CERN – LEP, LHC.
PHYS 1621 The Sun Some Properties Diameter times Earth’s Volume - about 1,000,000 times Earth’s Mass - about 300,000 times Earth’s 99.8% of Solar.
Response of the sensors to different doses from tests in Israel Radiotherapy is used as a treatment in around 50% of cancer cases in the UK. Predominantly,
Antimatter in the Laboratory Rolf Landua CERN Summer Student Lectures 2007.
E. Widmann, Antihydrogen GS-HFS, p. 1 LEAP03, Yokohama, March 4, 2003 Measurement of the Hyperfine Structure of Antihydrogen E. Widmann, R.S. Hayano, M.
Plasma diagnostics using spectroscopic techniques
Antimatter Mysteries 1 Rolf Landua Research physicist CERN.
1 Antimatter 1Antimatter and the Universe 2Antimatter in the Laboratory 3Antimatter in Daily Life.
International Symposium on Heavy Ion Inertial Fusion June 2004 Plasma Physics Laboratory, Princeton University “Stopping.
FLAR project S.L. Yakovenko JINR, Dubna,Russia. 2 Contents 1.FlAIR project 2.AD facility at CERN 3.Antyhydrogen and Positronium in-flight at FLAIR 4.LEPTA.
Introduction to Plasma- Surface Interactions Lecture 3 Atomic and Molecular Processes.
Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,
Seeing the Subatomic Stephen Miller Saturday Morning Physics October 11, 2003.
Considerations on Rydberg transport for antihydrogen formation Daniel Comparat Laboratoire Aimé Cotton Orsay FRANCE.
Interactions of radiation with Matter
High gradient acceleration Kyrre N. Sjøbæk * FYS 4550 / FYS 9550 – Experimental high energy physics University of Oslo, 26/9/2013 *k.n.sjobak(at)fys.uio.no.
Chapter 5 Interactions of Ionizing Radiation. Ionization The process by which a neutral atom acquires a positive or a negative charge Directly ionizing.
111 Antimatter. Congratulations and Thanks Ron! Plasma Fusion Center, MIT Physics of Plasmas ‘95 Plasma Study.
Measurement of photons via conversion pairs with PHENIX at RHIC - Torsten Dahms - Stony Brook University HotQuarks 2006 – May 18, 2006.
FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.
Antihydrogen Trapping and Resonant Interactions, חגיגת הפיזיקה שדה בוקר אלי שריד Eli Sarid ALPHA Collaboration, CERN + NRCN, Israel Antihydrogen.
Frictional Cooling A.Caldwell MPI f. Physik, Munich FNAL
SEMINAR ON ANTIMATTER. INTRODUCTION Antimatter is real. Energy density of chemical reaction is 1×10  J/kg. nuclear fission is 8×10  J/kg. nuclear fusion.
Angels, demons, CERN Rolf Landua Research Physicist (antimatter) Head of Education Group Rolf Landua Research Physicist (antimatter) Head of Education.
Antihydrogen Workshop, June , CERN S.N.Gninenko Production of cold positronium S.N. Gninenko INR, Moscow.
Merritt Moore Physics 95, 2009 T R A P P E D ANTIPARTICLES.
New physics with intense positron beams Alfredo Dupasquier Frascati, 20 gennaio 2010.
Michael Charlton -LAL Lecture Physics With Low Energy Antiparticles LAL Lecture.
Proposed Laboratory Simulation of Galactic Positron In-Flight Annihilation in Atomic Hydrogen Benjamin Brown, Marquette University, Milwaukee, WI, USA.
Ялта Конференция Yalta-, Univ. of Tokyo, Ryo FUNAKOSHI Univ. of Tokyo Ryo FUNAKOSHI ATHENA collaboration ATHENA: a High Performance detector for.
Past Fermilab Accumulator Experiments Antiproton Source Accumulator Ring (Inner Ring) Debuncher Ring (Outer Ring) AP50 Experiment Area PRECISION Precision.
Apparatus to Explore the Gravitational Interactions of antiatomS: the R&D programme CERN G. Bonomi (now at Brescia University), M. Doser, R. Landua, A.
Zeudi Mazzotta* On behalf of the AEgIS collaboration from Università degli studi di Milano Istituto Nazionale di Fisica Nucleare.
Slide 1 Overview Introduction Stochastic Cooling History of the Antiproton machines at CERN The AD and ELENA Conclusion.
Antimatter Mysteries 1 Rolf Landua Research physicist - Head of Education CERN.
Manoj B. Jadhav Supervisor Prof. Raghava Varma I.I.T. Bombay PANDA Collaboration Meeting, PARIS – September 11, 2012.
Testing antimatter gravity: the Aegis experiment at Cern Phd Student: Michele Sacerdoti Phd Workshop: 12-13/10/2015 Supervisors: Fabrizio Castelli, Marco.
MCP Analysis on ALpha Howard Chiao.
Overview Lecture 2 Trapping antiprotons Antihydrogen ATHENA and ATRAP
Cold Antimatter at CERN
By Ranjith Nambiar Roll no.41
Siara Fabbri University of Manchester
Wakefield Accelerator
ASACUSA Status and Outlook: antihydrogen
Mike Charlton Physics, Swansea
Synchrotron Ring Schematic
Angela Gligorova on behalf of the AEgIS and Medipix collaborations
CHEM 312: Lecture 6 Part 2 Gamma Decay
Outside the nucleus, the beta decay {image} will not occur because the neutron and electron have more total mass than the proton. This process can occur.
BEAMLINE MAGNETS FOR ALPHA-G
Subatomic Particles and Quantum Theory
Summer Student Sessions
Presentation transcript:

1 Antimatter - Rolf Landua Lecture Plan I.History of Antimatter II.Antimatter and the Universe III.Production and trapping of antiparticles IV.Precision tests of particle- antiparticle symmetry V.AD Physics and Antihydrogen VI.Antimatter technologies today

2 Antimatter - Rolf Landua ANTIHYDROGEN ATHENA (AD-1) ATRAP (AD-2) Phase 1( )Production of slow antihydrogen (completed) Phase 2(2006- )Trapping and cooling of antihydrogen Phase 3(?)Precision experiments

3 Antimatter - Rolf Landua Phase 3 - High precision comparison of hydrogen and antihydrogen “Shelving” Scheme with single (trapped) atom: Strong Lyman-a is excited and fluoresces 2s state is populated by 2-photon excitation ‘Shelving’ in (metastable) 2s suppresses fluorescence 2s state is ‘reset’ with microwave transition into 2p Natural line width 4· [J. Walz et al., Hyp. Int. 127 (2000) 167]

4 Antimatter - Rolf Landua How to make antihydrogen (Phase 1) AD p- Production (GeV) Deceleration (MeV) Trapping (keV) Cooling (meV) Na-22 e + Production (MeV) Moderation Accumulation (eV) p - and e + in mixing trap (cooling) Antihydrogen formation 10 8 e p - Detection of annihilation

5 Antimatter - Rolf Landua ATHENA - Schematic view

6 Antimatter - Rolf Landua ATHENA (AD-1)

7 Antimatter - Rolf Landua Antiprotons (capture and cooling)

8 Antimatter - Rolf Landua Positron Accumulation

9 Antimatter - Rolf Landua Electrical Landscapes ATHENA multi-electrode trap

10 Antimatter - Rolf Landua Antiproton-Positron Recombination Scheme Recombine free positrons + antiprotons using nested traps *D.S. Hall, G. Gabrielse, Phys. Rev. Lett. 77, 1962 (1996)

11 Antimatter - Rolf Landua Cold vs hot - Positron plasma ‘heating’ drive heat read ‘Shake’ positron plasma with RF fields Heating leads to measurable shift of ‘quadrupole frequency’ Recombination of antiprotons and positrons is suppressed for hot positron plasma

12 Antimatter - Rolf Landua Antihydrogen- Detection Charged particles 2 layers of Si microstrip detectors 511 keV gammas 192 CsI crystals Inner radius 4 cm, thickness ~ 3 cm 70% solid angle coverage Operates at 3 Tesla, 140 Kelvin (C. Regenfus et al., NIM A501, 65 (2003)) Event analysis: 1.Reconstruct vertex from tracks of charged particles 2.Identify pairs of 511 keV  -rays in time coincidence 3.Measure opening angle between the two  -rays

13 Antimatter - Rolf Landua ATHENA: Event Display

14 Antimatter - Rolf Landua ATHENA: First observation of cold antihydrogen 1) Distribution of annihilation points Neutral antihydrogen annihilates on trap walls (not trapped) Heating of positrons suppresses antihydrogen formation

15 Antimatter - Rolf Landua ATHENA - Antihydrogen (2) 2) Opening Angle Distribution Peak from back-to-back 511 keV photon pairs Disappears when positrons are ‘hot’ Correcting for detection efficiency: > 100,000 anti-atoms

16 Antimatter - Rolf Landua Theoretical models of recombination

17 Antimatter - Rolf Landua Dependence of production rate on positron temperature

18 Antimatter - Rolf Landua Recombination rate vs Positron Temperature Production decreases with increasing temperature No strong increase at very low temperature Simplistic power law fit to data yields ~ T -0.7±0.2 Note: corrections for plasma dynamics, magnetic field

19 Antimatter - Rolf Landua ATRAP (AD-2)

20 Antimatter - Rolf Landua ATRAP (AD-2) - Overview

21 Antimatter - Rolf Landua ATRAP uses positronium to make antihydrogen 1 1Cs atoms are excited to n~50 2Cs* atoms collide with positron cloud 3Formation of excited positronium Ps* collides with cold antiprotons 5 Antihydrogen formation (n ~ 45) 6 Antihydrogen detection by ionisation 456 Advantage: Positron attached to ‘resting’ antiproton Disadvantage: Low rate (14 antihydrogen atoms detected)

22 Antimatter - Rolf Landua ATRAP - Detection by ionisation Only works for antihydrogen in high-n states (n>35) moving along magnetic axis Field ionization - ‘rip’ positron off, antiproton left and detected by annihilation E Drift direction Formation Stripping

23 Antimatter - Rolf Landua ATRAP - Kinetic energy By using two time-variable ionisation+analysis fields, ATRAP measured E kin ~ 200 meV (?)

24 Antimatter - Rolf Landua Summary - Cold antihydrogen production Two different techniques have been demonstrated: nested traps (large production rate) Ps* collisions (small production rate) Recombination process: a mixture of radiative and 3-body transitions n-state distribution? ATRAP can only observe high-n states (field ionisation) Velocity of antihydrogen: unknown ( meV ?) MANY IMPORTANT FEATURES NOT YET UNDERSTOOD

25 Antimatter - Rolf Landua Phase 2 - Trap antihydrogen How to trap (neutral) antihydrogen? 1) magnetic moment (~  e+ ) - ATRAP/ALPHA approach 2) induced electric dipole moment (Stark deceleration) ? 3) Formation of positive antihydrogen ions (additional e + ) ??

26 Antimatter - Rolf Landua Magnetic bottle ? Recombination e.g. inside sextupole magnet Trap ‘low field seeking’ atoms (50%) in middle Very shallow potential (~ 0.07 meV/T) Realistic  B ~ T ➪ E < 0.02 meV (reminder: E ~ meV)

27 Antimatter - Rolf Landua Antihydrogen cooling 121 nm laser needed Prototype at MPI Munich … only 50 nW

28 Antimatter - Rolf Landua Phase 3 - Ideas for precision experiments 1S-2S Two-photon laser spectroscopy Ballistic gravity measurement Atomic interferometry Hyperfine Structure

29 Antimatter - Rolf Landua Hyperfine Structure Conceptual design (E. Widmann et al., CERN-SPSC )

30 Antimatter - Rolf Landua Gravity experiment - ballistic experiment J. Walz, T. H ä nsch, Gen. Rel. Gravit. 36 (2004) 561

31 Antimatter - Rolf Landua Gravity experiment - atom interferometer Mach - Zehnder interferometer T.J. Philips, Hyp. Int. 109 (1997) 357  g/g ~ mio Hbar:

32 Antimatter - Rolf Landua VI. ANTIMATTER - APPLICATIONS AND SPECULATIONS The wonderful and the weird … PET scan Positron microscope Tumour therapy PET isotope production Antiproton Induced Fission/Fusion Antimatter Propulsion

33 Antimatter - Rolf Landua Positron Emission Tomography (PET) Insert e + emitting isotopes (C-11, N-13, O-15, F-18) into physiologically relevant molecules (O 2, glucose, enzymes) and inject into patient. Study positron annihilation with crystal calorimeter ( Positron Emission Tomography, PET)

34 Antimatter - Rolf Landua Positron Microscope Scanning Positron Microscope: A. David et al., Phys. Rev. Lett. 87 (2001) Detection of defects in semiconductor surfaces Positrons at vacancy sites live longer (smaller electron density): long positron lifetimes indicates vacancies. Scan surface with pulsed (0.2 ns) positron beamfrom Na-22 source, ~ 1 µm wide. Time difference from emission to annihilation measures lifetime. Cross-shaped pattern ~ 120 µ across (Pt on SiO surface; positron lifetime in Si0 ~ 2x longer than in Pt)

35 Antimatter - Rolf Landua Antiproton Beam Therapy Goal: destroy tumour without (too much) harm to healthy tissue Gammas: exponential decay (peaks at beginning) Charged particles: Bragg peak (Plateau/Peak better for high Z) Antiprotons: like protons, but enhanced Bragg peak from annihilation

36 Antimatter - Rolf Landua Antiproton Cell Experiment ACE (AD-4)

37 Antimatter - Rolf Landua Antiprotons beams for tumour treatment ? ProtonsAntiprotons Cell survival probability Equal cell mortality for tumour cells with less radiation dose (= damage to healthy cells) Comparison with Carbon ion therapy

38 Antimatter - Rolf Landua In-situ production of PET isotopes using antiprotons ? Monte Carlo: antiprotons for 15 mCi source (F-18) N.b. Trapped electrons have been transported 5000 km; Gabrielse+Tseng, Hyperfine Interactions 76, 381 (1993) Only 40 isotope production centres (2 M$/cyclotron) for 1700 PETs in US Problem: short half-life (C-11: 20’, N-13: 10’, O-15: 2’, F-18: 110’) NASA/Penn State trap designed for antiprotons Plan: ~ antiprotons trapped transport to  hospital and isotope production in situ Problem: Security! Risk of antiproton loss requires severe shielding (several tons!)

39 Antimatter - Rolf Landua The price of 1 g antiprotons* The only ‘official’ financial estimate: A company (Pbar-Tech, now out-of-business) offered to buy 1% of 2002 Fermilab antiprotons (5·10 14 antiprotons/year): 274 K$ for 5·10 12 antiprotons 1g at Fermilab: 32,000,000 billion $ For comparison: US debt (total, 2006); 8,400 billion $ (~ 1/4000 g antimatter) US defense budget:540 billion $ (~ 17 µg) World energy consumption (2003):4·10 20 J (2250 years for 1 g) 1 µg antiprotons24 billion $ Production is dominated by power consumption: CERN (PS Complex) ~ 30 MW. For a bunch of 5·10 7 antiprotons, need 2.4 s of operation. At a price of 0.1 € per kWh, this costs 2€ per bunch. Energy consumption for 1 g antiprotons:9·10 23 J 1g at CERN*: 24,000,000 billion € *allegedly stolen from CERN; see D. Brown “Angels+Demons”

40 Antimatter - Rolf Landua Antimatter for space propulsion ?? Ambitious long-term plans: “Mars express”, Oort cloud, Proxima Centauri,... PROBLEM Conversion of reaction energy into propulsive thrust -> quick decay into gamma rays and neutrinos Energy balance for pbar-p annihilation Annihilation: energy release/mass = x H 2 /O 2 combustion; 100 x fusion!

41 Antimatter - Rolf Landua Antimatter driven space engines? 1) solid and gas-core thermal rockets (pion heating) 2) antiproton-initiated fission driving fusion rockets (needs µg) PROBLEMS - antihydrogen storage - production cost - Concept of antiproton-induced fission

42 Antimatter - Rolf Landua Concluding remarks Antiparticles discovered 74 years ago Very important for the development of particle physics and cosmology Antiproton production, deceleration and cooling techniques well understood Cold antihydrogen atoms have been produced (> 1 mio) Next big challenge: trapping and cooling Antihydrogen atoms ideal for studying CPT invariance and antimatter gravity with very high precision Applications in daily life exist, but high production costs of antiprotons are (almost) prohibitive Thank you for your attention.